Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(1+3+5+...+n\)
\(=\dfrac{\left(\dfrac{n-1}{2}+1\right)\cdot\left(n+1\right)}{2}=\dfrac{\left(n+1\right)^2}{4}=\left(\dfrac{n+1}{2}\right)^2\) là số chính phương.
https://olm.vn/hoi-dap/detail/10723222015.html vào link này nhé
Vì n là số lẻ n=2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là \(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\)
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
Lời giải:
Đặt n=2k+1n=2k+1
Số số hạng: n−12+1=2k+1−12+1=k+1n−12+1=2k+1−12+1=k+1
Tổng A là:
A=(k+1)(2k+1+1)2=2(k+1)22=(k+1)2A=(k+1)(2k+1+1)2=2(k+1)22=(k+1)2 là số chính phương (đpcm)
Đặt dãy trên là :
A = 1 + 3 + 5 + .... + ( 2k + 1 )
Số các số hạng tương ứng :
\(\frac{\left(2k+1\right)-1}{2}=\frac{2k}{2}=k\)( số )
\(A=\frac{k\left[1+\left(2k+1\right)\right]}{2}\)
\(=\frac{k\left(2k+2\right)}{2}\)
\(=k^2\)
Vậy ...