Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh \(S=3+3^2+...+3^{100}⋮120\)
Ta có \(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=120+...+3^{96}.120⋮120\)
Vậy \(S=3+3^2+...+3^{100}⋮120\)
Chứng minh \(P=36^{36}-9^{10}⋮45\)
Cái này dùng đồng dư thức
\(P=36^{36}-9^{10}\equiv1-4^{10}\equiv1-16^5\equiv1-10\equiv0\left(mod5\right)\)
Mà dễ thấy P chia hết cho 9 và \(\left(9;5\right)=1\)
Vậy P chia hết cho 45
Chứng minh \(M=7^{1000}-3^{1000}⋮10\)
Ta có \(M=7^{1000}-3^{1000}=\left(2401\right)^{250}-\left(81\right)^{250}\equiv1-1\equiv0\left(mod10\right)\)
Vậy M chia hết cho 10
Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7 . (-1)9 . (-1)11 . (-1)13
= (-1)(-1).(-1).(-1).(-1).(-1)
= (-1)6
= 1
b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)
= 0
Bài 2 :
Đặt A = 12 + 22 + 32 + ... + 102 = 385
=> 22(12 + 22 + 32 + ... + 102) = 22.385
=> 22 + 42 + 62 + ..... + 202 = 4.385
=> 22 + 42 + 62 + ..... + 202 = 1540
Vậy 22 + 42 + 62 + ..... + 202 = 1540
bài 3:
a) 2S=2+22+23+24+...+251
2S-S=251-1
mà 251-1<251
Suy ra:s<251
71000 ,là 1 số lẻ . 301000 luân là số chẵn mà ; 1 số chẵn trừ đi 1 số lẻ bao giờ cũng cho kết quả lẻ
nên 71000- 301000 = ( 1 số lẻ ) không thể chia hết cho 10 đâu THANH ạ
Chắc bạn đánh sai đề, đúng ra phải là 3 chứ không phải 30 đâu Thanh ơi
Câu hỏi của Đỗ Quang Thanh - Toán lớp 7 - Học toán với OnlineMath
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
\(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x^2}{18}=\dfrac{y^2}{16}=\dfrac{2x^2+y^2}{18+16}=\dfrac{136}{34}=4\)
Suy ra: \(\left\{{}\begin{matrix}x^2=4.9=36\\y^2=4.16=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm8\end{matrix}\right.\)
2) Ta có: \(2^{20}=\left(2^4\right)^5=16^5\)
Được biết số có tận cùng là \(6\) thì lũy thừa bao nhiêu cũng bằng \(6\)
Nên \(16^5=\overline{...6}\Leftrightarrow16^5-1=\overline{.....5}⋮5\)
Nên \(\dfrac{2^{20}-1}{5}\) là số nguyên
3)
Ta có:
\(A=100^2+200^2+...+1000^2\)
\(A=\left(1.100\right)^2+\left(2.100\right)^2+...+\left(10.100\right)^2\)
\(A=1^2.100^2+2^2.100^2+....+10^2.100^2\)
\(A=100^2\left(1^2+2^2+...+100^2\right)\)
\(A=10000.385=3850000\)
Ta có :
71000 = 74.250 = ( 74 )250 = 2401250 = ( ...1 )
31000 = 34.250 = ( 34 )250 = 81250 = ( ...1 )
Suy ra : 71000 - 31000 = ( ...1 ) - ( ...1 ) = ( ...0 )
Do chữ số tận cùng của nó bằng 0 nên 71000 - 31000 chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10