Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(4+4^2)+(4^3+4^4)+...+(4^19+4^20)
A=4(1+4)+4^3(1+4)+...+4^19(1+4)
A=(1+4).(4+4^3+...+4^19)
A=5.(4+4^3+..+4^19)
vì 5 chia hết cho =>5.(4+4^3+...+4^19) chí hết cho 5
=> A chia hết cho 5
câu b làm tương tự cũng nhóm mỗi nhóm là 2 số hạng giống a nha bn
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
\(5+5^3+5^5+5^7+..+5^{27}\)
\(=\left(5+5^3\right)+5^4\left(5+5^3\right)+...+5^{24}\left(5+5^3\right)\)
\(=130+130\cdot5^4+...+130\cdot5^{24}\)
\(=130\left(1+5^4+..5^{24}\right)\)
Vì \(130⋮26\Rightarrow5+5^3+5^5+...+5^{27}⋮26\left(đpcm\right)\)
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
1) Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Khi đó đặt A=a(a+1)(a+2)(a+3)(a+4)
Vì trong 5 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3.
Mà (2,3)=1 nên A chia hết cho 6.
Trong 5 số tự nhiên Liên tiếp luôn Tồn tại một số chia hết cho 5, nên A chia hết cho 5.
Mà (5,6)=1 nên A chia hết cho 30.
CAC cau khac minh đang nhap xin loi nha !!!
gọi số cần tìm là a.ta có:a=4n+3
=17m+9
=19k+13
\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)
\(=17m+9+25=17m+34=17\left(m+2\right)⋮17\)
\(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)
\(\Rightarrow a+25⋮17,4,19\)
\(\Rightarrow a+25⋮1292\)
\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)
do 1267<1292 nên số dư của phép chia là 1267
2,
gọi ƯCLN[2n+1,2n(n+1)] là d
\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)
\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)
\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)
\(\Rightarrow n⋮d\)
MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)
suy ra đpcm
Làm bên dưới rồi.
Ta có; 4 + 42 + 43 + ..... + 419
= (4 + 42) + (43 + 44) + .... + (418 + 419)
= 4.(1 + 4) + 43.(1+4) + ..... + 418.(1 + 4)
= 4. 5 + 43 . 5 + ......+ 418.5
= (4 + 43 + .... + 418) . 5 chia hết cho 5