K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

Nếu $n$ lẻ: 

$3^n+4\equiv (-1)^n+4\equiv (-1)+4\equiv 3\pmod 4$

$\Rightarrow 3^n+4$ không phải số chính phương.

Nếu $n$ chẵn. Đặt $n=2k$ với $k$ nguyên.

$3^n+4=3^{2k}+4=9^k+4\equiv 1+4\equiv 5\pmod 8$

Mà 1 scp khi chia 8 dư 0,1,4 nên $3^n+4$ không phải scp.

Vậy $3^n+4$ không là scp.

AH
Akai Haruma
Giáo viên
31 tháng 8 2024

Lời giải:

Ta thấy:
$2004^4\vdots 4$

$2004^3\vdots 4$

$2004^2\vdots 4$

$23$ chia $4$ dư $3$

$\Rightarrow 2004^4+2004^3+2004^2+23$ chia $4$ dư $3$

Mà 1 scp khi chia 4 dư $0$ hoặc $1$ nên $2004^4+2004^3+2004^2+23$ không phải số chính phương.

30 tháng 8 2018

lêu lêu

3 tháng 6 2015

Do n \(\in\) N* nên 10n + 8 = (...0) + 8 = (...8)  => 10n + 8 có chữ số tận cùng là 8 nên không thể là số chính phương (bình phương của một số tự nhiên).

6 tháng 1 2016

vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Lời giải:

Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.

Khi đó:

$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$

Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.

$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$

Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.

$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).

21 tháng 12 2015

A=1+3+3^2...+3^30  (1)

Nhan 2 ve voi 3 ta duoc : 

3A=3+3^2+3^3+...+3^31             (2)

Lay (2)-(1) ta duoc : 

2A=1+3^31

2A=1+...7

2A=...8

A=...8:2

A=...4

Vay A khong phai la so chinh phuong

**** nhe

10 tháng 5 2016

??????????????

10 tháng 5 2016

trên mạng mà tra bạn ơi