Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2014}-3^{2013}+3^{2012}=3^{2012}\left(9-3+1\right)\)
\(=3^{2012}\cdot7=3^{2010}\cdot63⋮63\)
Dpcm
32014 - 32013 + 32012
= 32012 x 32 - 32012 x 3 + 32012 x 1
= 32012 x 9 - 32012 x 3 + 32012 x 1
= 32012 x (9 - 3 + 1)
= 32012 x 7
= 32010 x 32 x 7
= 32010 x 9 x 7
= 32010 x 63
Mà 63 \(⋮\) 63 nên 32010 x 63 \(⋮\) 63 => 32014 - 32013 + 32012 \(⋮\)63
\(A=5^{2014}-5^{2013}+5^{2012}=5^{2012}\left(5^2-5^1+5^0\right)=21.5^{2012}\\ \)
\(\hept{\begin{cases}105=21.5\\A=21.5^{2012}\end{cases}}\Rightarrow\frac{A}{105}=\frac{21.5^{2012}}{21.5}=5^{2011}\Rightarrow dpcm\)
5^2014-5^2013+5^2012=5^2012(5^2-5^1+1)
=5^2012.21
=5^2011.5.21
=5^2011.105
Vậy 5^2014-5^2013+5^2012 chia hết cho 105
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
3B = 1+1/3+....+1/3^2012
2B=3B-B=(1+1/3+....+1/3^2012)-(1/3+1/3^2+....+1/3^2013) = 1-1/3^2013 < 1
=> B < 1:2 = 1/2
k mk nha
Ta có :
\(3^{2014}+3^{2013}-3^{2012}\)
\(=3^{2012}\left(3^2+3-1\right)\)
\(=3^{2012}.11\)
\(\Rightarrow3^{2014}+3^{2013}-3^{2012}\)
\(\RightarrowĐPCM\)