K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^{10}.10^2}\)

\(=\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^{10}}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{10^2}< 1\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

dpcm là chi z

5 tháng 12 2015

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+..+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

nhớ tick nhé

1 tháng 7 2016

Mình gợi ý cho thôi, cậu tự làm nha

VD: \(\frac{3}{1^2\cdot2^2}=\frac{3}{1\cdot4}=\frac{1}{1}-\frac{1}{4}\)

Các phân số còn lại thì tương tự, xong rồi thì rút gọn.

Thế là ta có đpcm!!!!

26 tháng 9 2017

Đặt A là biểu thức trên

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{31}{15^2.16^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+...+\frac{31}{225.256}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{225}-\frac{1}{256}\)

\(=1-\frac{1}{256}=\frac{255}{256}< 1\)

Vậy...