K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Bài 1:

a, 2x(3x - y)(3x+y)

= 2x(9x2 - y2)

= 18x3 - 2xy2

b, (x - 5)(x + 5)

= x2 - 25

Bài 2: Ta có:

(n - 1)(3 - 2n) - n(n + 5)

= 3n - 2n2 - 3 + 2n - n2 - 5n

= (3n + 2n - 5n) + (-2n2 - n2) - 3

= -3n2 - 3

= -3(n2 + 1)

nên (n - 1)(3 - 2n) - n(n + 5) chia hết cho 3 với mọi n

31 tháng 10 2017

1) Ta chứng minh được rằng nghiệm nguyên của đa thức, nếu có, phải là ước của hệ số tự do.

Thật vậy, giả sử đa thức \(a_ox^n+a_1x^{n-1}+...+a_{n-1}x+a_n\) với các hệ số \(a_o,a_1....a_n\) nguyên, có nghiệm \(x=a\left(a\in Z\right)\). Thế thì:

\(a_ox^n+a_1x^{n-1}+...+a_{n-1}x+a_n=\left(x-a\right)\left(b_ox^{n-1}+b_1x^{n-2}+...+b_{n-1}\right)\)

trong đó các hệ số \(b_o,b_1,...,b_{n-1}\) nguyên. Hạng tử có bậc thấp nhất của tích ở vế phải bằng \(-ab_{n-1}\), hạng tử có bậc thấp nhất ở vế trái bằng \(a_n\). Do đó \(-ab_{n-1}=a_n\), tức a là ước của \(a_n\)

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

DD
17 tháng 6 2021

a) \(3x^2+2y⋮11\Leftrightarrow16\left(3x^2+2y\right)⋮11\Leftrightarrow48x^2-33x^2+32y-44y⋮11\)

\(\Leftrightarrow15x^2-12y⋮11\)

b) \(2x+3y^2⋮7\Leftrightarrow10\left(2x+3y^2\right)⋮7\Leftrightarrow20x-14x+30y^2-14y^2⋮7\)

\(\Leftrightarrow6x+16y^2⋮7\)

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại