Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
Do 2009 đồng dư với 1 (mod 2008)
=> 20092009 đồng dư với 12009 hay đồng dư với 1 (mod 2008)
=> 20092009-1 đồng dư với 0 (mod 2008)
Vậy 20092009-1\(⋮\)2008
xét \(A=1+14+14^2+14^3+...+14^{13}\) (*)
Tính tổng trên có \(A=\frac{14^{14}-1}{13}\) (**)
(*) hiển nhiên A là tỏng của các số tự nhiên do vậy phải tự nhiên
(**) \(A\in N\Rightarrow14^{14}-1⋮13\) +> dpcm
p/s: để tính tổng (*) có lẽ bạn biết rồi
20092008=20093*20092005
Vì 20093 chia hết cho 2010 nên 20093*20095 chia hết cho 2010 hay 20092008 chia hết cho 2010
20112010=20114*20112006
Vì 20114 chia hết cho 2010 nên 20114*20112016 chia hết cho 2010 hay 20112010 chia hết cho 2010
=>20092008+20112010 chia hết cho 2010
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
cghttttttttttttttttttttttttttttttttttttttttttttttttttttttt
S = 1 + 3 + 3^2 + 3^3 + 3^4 + .... + 3^2009
S = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 + .... + 3^2009
Từ 0 -> 2009 có tất cả số số hạng là :
( 2009 - 0 ) : 1 + 1 = 2010 ( số )
=> có : 2010 : 2 = 1005 cặp
=> S = ( 3^0 + 3^1 ) + ( 3^2 + 3^3 ) + ( 3^4 + 3^5 ) + .... + ( 3^2008 + 3^2009 )
=> S = ( 1 + 3 ) + ( 9 + 27 ) + ( 81 + 243 ) + ....
=> S = 4 + 36 + 324 + ....
Ta thấy 4 ; 36 ; 324 đều chia hết cho 4 => ( 3^0 + 3^1 ) + ( 3^2 + 3^3 ) + ( 3^4 + 3^5 ) chia hết cho 4
=> 3^2008 + 3^2009
=> ( 3^0 + 3^1 ) + ( 3^2 + 3^3 ) + ( 3^4 + 3^5 ) + .... + ( 3^2008 + 3^2009 ) chia hết cho 4
=> S chia hết cho 4
Vậy ...
( MK làm theo suy nghĩ có gì trình bày sai or gì đó bạn có thể sửa lại !! ^^
Cô ơi em có cách này ko bik có đúng ko
Ta có 2009^2009-1=2009^2009-1^2009
\(\Rightarrow\)2009^2009-1^2009\(⋮\)2009-1=2008
\(\Rightarrow\)dpcm
Do 2009 chia 2008 dư 1 nên \(2009^{2009}\) chia 2008 dư \(1^{2008}=1\).
Suy ra \(2009^{2009}-1\) chia hết cho 2008.