Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 19952000có chữ số tận cùng là 5(số có cs tận cùng là 5 mũ lên bao nhiêu cũng có chữ số tận cùng là 5)
19962001có chữ số tận cùng là 6 (số có cs tận cùng là 6 mũ lên bao nhiêu cũng có chữ số tận cùng là 6)
19972002= 19972000.19972= (19974)500 x ...9 = ...1500 x ,,,9 = ...9
Suy ra: 19952000+19962001+19972002= ...5 + ...6 + ...9 = ...0
Vì có chữ số tận cùng là 0 nên nó chia hết cho 5
a,Ta có : \(1996\equiv1\left(mod5\right)\)
\(\Rightarrow1996^{1996}\equiv1^{1996}\left(mod5\right)\)
\(1991\equiv1\left(mod5\right)\)
\(\Rightarrow1991^{1991}\equiv1^{1991}\left(mod5\right)\)
\(\Rightarrow1996^{1996}-1991^{1991}\equiv1^{1996}-1^{1991}\left(mod5\right)\)
\(\Leftrightarrow1996^{1996}-1991^{1991}\equiv0\left(mod5\right)\)
Hay \(1996^{1996}-1991^{1991}⋮5\)
b,Ta có : \(9^{1972}=\left(9^2\right)^{986}=81^{986}\)
\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\)
Ta lại có : \(81\equiv1\left(mod10\right)\)
\(\Rightarrow81^{986}\equiv1^{986}\left(mod10\right)\)
\(2401\equiv1\left(mod10\right)\)
\(\Rightarrow2401^{493}\equiv1^{493}\left(mod10\right)\)
\(\Rightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv1^{986}-1^{493}\left(mod10\right)\)
\(\Leftrightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv0\left(mod10\right)\)
hay \(9^{1972}-7^{1972}⋮10.\)
c, Ta có : \(89\equiv1\left(mod2\right)\)
\(\Rightarrow89^{26}\equiv1^{26}\left(mod2\right)\)
\(45\equiv1\left(mod2\right)\)
\(\Rightarrow45^{21}\equiv1^{21}\left(mod2\right)\)
\(\Rightarrow89^{26}-45^{21}\equiv1^{26}-1^{21}\left(mod2\right)\)
\(\Rightarrow89^{26}-45^{21}\equiv0\left(mod2\right)\)
Hay \(89^{26}-45^{21}⋮0\)
\(1996\equiv1\left(mod5\right)\Rightarrow1996^{1996}\equiv1\left(mod5\right)\)
\(1991\equiv1\left(mod5\right)\Rightarrow1991^{1991}\equiv1\left(mod5\right)\)
\(\Rightarrow1996^{1996}-1991^{1991}\equiv1-1=0\left(mod5\right)\Leftrightarrowđpcm.\)
\(9^{1972}=\left(9^2\right)^{986}=81^{986}\equiv1\left(mod10\right)\)
\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\equiv1\left(mod10\right)\)
\(\Rightarrowđpcm.\)
Ta có : A = 19952000+19962001+19972002 19952001 = 1995 x 1995 x 1995 x ... x 1995 = .....5
19962001 = 1996 x 1996 x 1996 x ... x 1996 = .....6
19972002 = 1997 x 1997 x 1997 x ... x 1997 = (1997 x 1997 x1997 x 1997) x ... x(1997 x 1997 x 1997 x 1997) =....1 x ....1 x .... x ....1 =....1
....5 + ....6 + ....1 =....2 , ....2 không chia hết cho 5 nên A không chia hết cho 5.
Áp dụng quy tắc tìm số tận cùng ta có:
16281997 sẽ có tận cùng là M8
1292 sẽ có tận cùng là N2
Như vậy 16281997 +12921997 chia hết cho 10 ( vì chữ số tận cùng của tổng này sẽ là 0 )
Ta có:
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)
\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)
\(A=\overline{\left(.....0\right)}\)
Vì A có tận cùng là 0
\(\Rightarrow A⋮5\) (Đpcm)