Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...
11^x-1 chia het cho 10 voi moi x
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10
suy ra 11^9+11^8+...+11+1 chia het cho 10
suy ra 11^10-1 chia het cho 100
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
a) 85+211
=(23)5+211=215+211
=211(24+1)
=211.17 (chia hết cho 17 )
Vậy 85+211 chia hết cho 17
b)Ta có a^n + b^n
=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19
= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
Ta có :
B=101.50
gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50
Mà : (101;50)=1
⇒A⋮50.101⇒A⋮B
Ta có :
B=101.50
⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50
Mà : (101;50)=1
⇒A⋮50.101⇒A⋮B