K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 6 2020

\(P=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left[cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right]\)

\(=\frac{3}{2}-\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}cos2x\)

\(=\frac{3}{2}-cos2x\)

Đề bài ko đúng, biểu thức trên vẫn phụ thuộc vào biến x

Bạn có thể kiểm chứng ngay biểu thức ban đầu (chưa rút gọn) bằng 2 giá trị x khác nhau

Với \(x=\frac{\pi}{6}\) cho kết quả \(P=\frac{9}{4}\)

Với \(x=\frac{\pi}{2}\) cho kết quả \(P=\frac{3}{2}\)

Nếu biểu thức ko phụ thuộc x thì phải luôn cho kết quả giống nhau dù x bằng bao nhiêu

NV
10 tháng 5 2019

\(P=sin^4x+\left(sin^2\left(x+\frac{\pi}{4}\right)\right)^2+cos^4x+\left(cos^2\left(x+\frac{\pi}{4}\right)\right)^2\)

\(=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{4}\right)\right)^2\)

\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}+\frac{1}{2}sin2x+\frac{1}{4}sin^22x+\frac{1}{4}+\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)

\(=1+\frac{1}{2}\left(sin^22x+cos^22x\right)=\frac{3}{2}\)

NV
13 tháng 4 2019

\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)

\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)

Vậy ta có:

\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)

\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)

Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?

Bài 3:

\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)

\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)

\(\Rightarrow tan^2x+cot^2x=2\)

14 tháng 4 2019

Câu 2 yêu cầu tính P

NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

AH
Akai Haruma
Giáo viên
18 tháng 5 2020

Lời giải:
Đặt $\sin x=a; \cos x=b(a>b)$

Ta có: $a^3-b^3=\frac{\sqrt{2}}{2}\Rightarrow (a^3-b^3)^2=\frac{1}{2}$

$\Leftrightarrow a^6+b^6-2a^3b^3=\frac{1}{2}$

$\Leftrightarrow (a^2+b^2)(a^4-a^2b^2+b^4)-2a^3b^3=\frac{1}{2}$

$\Leftrightarrow a^4-a^2b^2+b^4-2a^3b^3=\frac{1}{2}$
$\Leftrightarrow (a^2+b^2)^2-3a^2b^2-2a^3b^3=\frac{1}{2}$

$\Leftrightarrow 3a^2b^2+2a^3b^3=\frac{1}{2}$

Đặt $ab=t$ thì $6t^2+4t^3-1=0$

$\Leftrightarrow 2t^2(2t+1)+(2t-1)(2t+1)=0$

$\Leftrightarrow (2t+1)(2t^2+2t-1)=0$

$\Rightarrow t=\frac{-1}{2}; t=\frac{-1\pm \sqrt{3}}{2}$

Nếu $t=ab=\frac{-1}{2}$:

$1=a^2+b^2=(a+b)^2-2ab\Rightarrow (a+b)^2=2ab+1=0\Rightarrow a=-b$

$\Rightarrow \tan x=\frac{a}{b}=-1$

$\Rightarrow \tan (x+\frac{\pi}{4})=\frac{\tan x+1}{1-\tan x}=0$

Nếu $t=ab=\frac{-1-\sqrt{3}}{2}\Rightarrow (a+b)^2=a^2+b^2+2ab=1+(-1-\sqrt{3})< 0$ (vô lý- loại)

Nếu $t=ab=\frac{-1+\sqrt{3}}{2}$

$a^3-b^3=\frac{\sqrt{2}}{2}\Leftrightarrow (a-b)(a^2+b^2+ab)=\frac{\sqrt{2}}{2}$

$\Leftrightarrow (a-b)(1+ab)=\frac{\sqrt{2}}{2}$

$\Rightarrow a-b=\frac{\sqrt{2}}{2}:(1+ab)=\frac{\sqrt{6}-\sqrt{2}}{2}$

Áp dụng định lý Vi-et đảo, $a,-b$ là nghiệm của PT:

$X^2-\frac{\sqrt{6}-\sqrt{2}}{2}X+\frac{1-\sqrt{3}}{2}=0$

Đến đây giải ra tìm $a,-b\Rightarrow a,b$

$\Rightarrow \tan x=\frac{a}{b}$. Từ đó thế vào tìm $\tan (x+\frac{\pi}{4})$

NV
22 tháng 6 2020

\(2sin\left(\frac{\pi}{2}+x\right)+sin\left(3\pi-x\right)+sin\left(\frac{3\pi}{2}+x\right)+cos\left(\frac{\pi}{2}+x\right)\)

\(=2cosx+sinx-cosx-sinx\)

\(=cosx\)

NV
17 tháng 4 2019

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

30 tháng 4 2019

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

NV
2 tháng 6 2020

\(A=\frac{1}{2}+\frac{1}{2}cos2x+\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}+\frac{1}{2}cos2x+cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}+\frac{1}{2}cos2x-\frac{1}{2}cos2x=\frac{3}{2}\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(2x+\frac{4\pi}{3}\right)+\frac{1}{2}-\frac{1}{2}cos\left(2x-\frac{4\pi}{3}\right)\)

\(=\frac{3}{2}-\frac{1}{2}cos2x-cos2x.cos\frac{4\pi}{3}\)

\(=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x=\frac{3}{2}\)