Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2x+1>3\)
\(\Leftrightarrow2x>2\)
\(\Leftrightarrow x>1\)
\(\left|x\right|>1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
=> Hai bất phương trình sau không tương đương
b. 3x – 9 < 0
\(\Leftrightarrow3x< 9\)
\(\Leftrightarrow x< 3\)
x2 < 9
\(\Leftrightarrow\left|x\right|< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 3\end{matrix}\right.\)
=> Hai bất phương trình sau không tương đương
a)2x+1>32x+1>3
⇔2x>2⇔2x>2
⇔x>1⇔x>1
|x|>1|x|>1
⇔{x>1x<−1⇔{x>1x<−1
=> Hai bất phương trình sau không tương đương
b. 3x – 9 < 0
⇔3x<9⇔3x<9
⇔x<3⇔x<3
x2 < 9
⇔|x|<3⇔|x|<3
⇔{x>−3x<3⇔{x>−3x<3
=> Hai bất phương trình sau không tương đương
Bài 1:
a: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x-1\right)^2+1>0\)(luôn đúng)
b: \(x^2-6x+10\)
\(=x^2-6x+9+1=\left(x-3\right)^2+1>=1\) với mọi x
c: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4>0\)
d: \(-x^2+10x-30\)
\(=-\left(x^2-10x+30\right)\)
\(=-\left(x^2-10x+25+5\right)\)
\(=-\left(x-5\right)^2-5\le-5< 0\)
1) \(\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=\left(x^2-8x+16\right)+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)
Vậy....
2) tương tự
\(1.\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=x^2-2.4x+16+1\)
\(=\left(x-4\right)^2+1\)
Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)
hay \(\left(x-3\right)\left(x-5\right)+2>0\)
vì chưa khẳng định x-1 khác 0 nên không thể chia được