Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+3 chia hết cho x-1
=>x2-x+x-1+4 chia hết cho x-1
=>x(x-1)+(x-1)+4 chia hết cho x-1
=>4 chia hết cho x-1
=>x-1 E Ư(4)={1;-1;4;-4}
=>x E {2;0;5;-3}
x2+5x-11 chia hết cho x+5
=>x(x+5)-11 chia hết cho x+5
=>11 chia hết cho x+5
=>x+5 E Ư(11)={1;-1;11;-11}
=>x E {-4;-6;6;-16}
x2-3x+5 chia hết cho x+5
=>x2+5x-8x-40+45 chia hết cho x+5
=>x(x+5)-8(x+5)+45 chia hết cho x+5
=>45 chia hết cho x+5
=>x+5 E Ư(45)={1;-1;3;-3;5;-5;9;-9;15;-15;45;-45}
=>x E {-4;-6;-2;-8;0;-10;4;-14;10;-20;40;-50}
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)
a)<=>(x-3)+8 chia hết x-3
=>8 chia hết x-3
=>x-3\(\in\){-1,-2,-4,-8,1,2,4,8}
=>x\(\in\){2,1,-1,-5,4,5,7,11}
b)<=>(x-5)+38 chia hết x-5
=>38 chia hết x-5
=>x-5\(\in\){1,2,38,-1,-2,-38}
=>x\(\in\){6,7,43,3,-33}
Nguyễn Trần Anh Tuấn và mọi người ủng hộ để tôi đc 400 điểm nhé
a) ta se co :
( x - 3) + 8 chia het cho x - 3
vi x - 3 chia het cho x - 3
nen 8 chia het cho x - 3
x - 3 \(\in\)U(8 ) = { -8;-4;-2;-1;1;2;4;8}
vay x \(\in\) = { -5;-1;1;4;5;7;11}
b) ta se co :
( 3x - 15 ) + 26 chia het cho x - 5
3(x-5) + 26 chia het cho x - 5
vi 3(x-5) chia het cho x - 5
nen 26 chia het cho x - 5
x - 5 \(\in\)U (26) = { -26;-13;-2;-1;1;2;13;26}
vay x\(\in\) = { -21;-8;3;4;6;7;18;31}
minh nha ban oi , thanks
Câu 1:
25 - 4.( -x - 1 ) + 3.(5x) = -x + 34
=> 25 + 4x + 4 + 15x = -x + 34
=> (25 + 4) + (4x + 15x) = -x + 34
=> 29 + 19x = -x + 34
=> 19x + x = 34 - 29
=> 20x = 5
=> x = \(\frac{1}{4}\)(T/m)
Vậy x =\(\frac{1}{4}\)
Câu 2:
Ta có: 11\(⋮\)2x - 1
=> 2x - 1 \(\in\)Ư(11) = \(\left\{\pm1;\pm11\right\}\)
=> 2x \(\in\){2; 0; 12; -10}
=> x \(\in\){1; 0; 6; -5} (T/m)
Vậy x \(\in\){1; 0; 6; -5}
Câu 3:
Ta có: x + 12 \(⋮\)x - 2
=> x - 2 + 14 \(⋮\) x - 2
Mà x - 2 \(⋮\) x - 2
=> 14 \(⋮\) x - 2
=> x - 2 \(\in\)Ư(14) = \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
=> x \(\in\){3; 1; 4; 0; 9; -5; 16; -12} (T/m)
Vậy x \(\in\){3; 1; 4; 0; 9; -5; 16; -12}
Câu 4:
Ta có: 3x + 17 \(⋮\)x + 3
=> 3x + 9 + 8 \(⋮\)x + 3
=> 3(x + 3) + 8 \(⋮\)x + 3
Mà 3(x + 3) \(⋮\)x + 3
=> 8 \(⋮\)x + 3
=> x + 3\(\in\)Ư(8) =\(\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
=> x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11} (T/m)
Vậy x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11}
C2:
11 chia hết cho 2x—1
==> 2x—1 € Ư(11)
==> 2x—1 € { 1;-1;11;-11}
Ta có:
TH1: 2x—1=1
2x=1+1
2x=2
x=2:2
x=1
TH2: 2x—1=—1
2x=-1+1
2x=0
x=0:2
x=0
TH3: 2x—1=11
2x=11+1
2x=12
x=12:2
x=6
TH4: 2x—1=-11
2x=-11+1
2x=—10
x=-10:2
x=—5
Vậy x€{1;0;6;—5}
C3: x+12 chia hết cho x—2
==> x—2+14 chia hết cho x—2
Vì x—2 chia hết cho x—2
Nên 14 chia hết cho x—2
==> x—2 € Ư(14)
==> x—2 €{ 1;-1;2;-2;7;-7;14;-14}
Ta có:
TH1: x—2=1
x=1+2
x=3
TH2: x—2=-1
x=-1+2
x=1
TH3: x—2=2
x=2+2’
x=4
TH4: x—2=—2
x=—2+2
x=0
TH5: x—2=7
x=7+ 2
x=9
TH6:x—2=—7
x=—7+ 2
x=—5
TH7: x—2=14
x=14+2
x=16
TH8: x—2=-14
x=-14+2
x=-12
Vậy x€{3;1;4;0;9;—5;16;-12}
Vì chia hết cho cả 2 và 5 nên số đó có tận cùng là 0 nên ở ý a, số đó là 370
b, Để chia hết cho 5 thì phải có tận cùng là 0 hoặc 5, nhưng để chia hết cho cả 3 thì phải có tổng các chữ số chia hết cho 3. Như vậy số 28.. phải có tận cùng là 5 tức là số 285
a) 37.. chia hết cho cả 2 và 5
Ta thấy số tận cùng là 0;2;4;6;8 chia hết cho 2
số tận cùng là 0;5 chia hết cho 5
để 37.. chia hết cho 2 và 5 thì số đó phải tận cùng bằng 0
Vậy số đó là 370
b) 28.. chia hết cho 3 và 5
Để 28.. chia hết cho 5 thì số đó phải tận cùng là 0 và 5
TH1: Nếu số đó là 280
- 280 chia hết cho 5
- 280 k chia hết cho 3 (vì 2 + 8 +0 = 10 k chia hết cho 3)
=> k thỏa mãn
TH2: Nếu số đó là 285
- 285 chia hết cho 5
- 285 chia hết cho 3 (vì 2 + 8 +5 = 15 chia hết cho 3)
=> Thỏa mãn
Vậy số đó là 285
HOK TOT
a , (x+1)+(x+2)+....+(x+100)=5750
x . 100 + ( 1+2+..+100 ) = 5750
x . 100 + 5050 = 5750
x . 100 = 700
x = 700 ; 100
x = 7
a, ( x+ 4 ) \(⋮\) ( x-1 )
Ta có : x+4 = x-1 + 5 mà ( x-1) \(⋮\) ( x-1 ) để ( x+ 4 ) \(⋮\) ( x-1 ) thì => 4 \(⋮\) ( x-1 )
hay x-1 thuộc Ư(4) = { 1;2;4}
ta có bảng sau
x-1 | 1 | 2 | 4 |
x | 2 | 3 | 5 |
Vậy x \(\in\) { 2;3;5 }
b, (3x+7 ) \(⋮\) ( x+1 )
Ta có : 3x+7 = 3(x+1) + 4 mà 3(x+1) \(⋮\) ( x+1) để (3x+7 ) \(⋮\) ( x+1 ) thì => 4 \(⋮\) ( x+1 )
hay x+1 thuộc Ư ( 4) = { 1;2;4}
Ta có bảng sau
x+1 | 1 | 2 | 4 |
x | 0 | 1 | 3 |
Vậy x \(\in\) {0;1;3} ( mik chỉ lm đến đây thôi , thông kảm )
Ta có 1.3.5....55+11 chia hết cho 11
1.3.5.7.9.11......55 +11 chia hết cho 11
Ta thấy 11 chia hết cho 11 và 1.3.5.7.9.11......55 chia hết cho 11
Vậy A chia hết cho 11
A = 1 . 3 . 5 ... 55 + 11 chia hết cho 11
Ta thấy :
1 . 3 . 5 ... 55 = 1 . 3 . 5 .... 5 . 11 chia hết cho 11 ( 1 )
11 chia hết cho 11 ( 2 )
Từ ( 1 ) và ( 2 ) => 1 . 3 . 5 . ... . 55 + 11 chia hết cho 11
=> A chia hết cho 11