K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2018

Áp dụng hằng đẳng thức:
\(1-a^{n+1}=\left(1-a\right)\left(1+a+a^2+...+a^n\right)\)
Tại a=1/2 ta có:
\(1-\frac{1}{2^{n+1}}=\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^n}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}=\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}}-1-\frac{1}{2}=2\left(1-\frac{1}{2^{n+1}}\right)-1,5\)
Do \(2\left(1-\frac{1}{2^{n+1}}\right)< 2\Rightarrow2\left(1-\frac{1}{2^{n+1}}\right)-1,5< 1\)hay \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}< 1\left(\forall n\in N^{\cdot}\right)\)

20 tháng 3 2016

nhanh giúp mình

11 tháng 2 2016

Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)

            \(\frac{1}{2^3}<\frac{1}{2.3}\)

            \(\frac{1}{2^4}<\frac{1}{3.4}\)

             ...........

             \(\frac{1}{2^n}<\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<1\)

11 tháng 2 2016

ai cho mình hết âm thì may mắn cả năm

19 tháng 3 2016

Ta có 1/2^2 + 1/3^2 + ... + 1/n^2 < 1/1*2 + 1/2*3 + ... + 1/(n-1)*n = 1 - 1/2 + 1/2 - 1/3 + ... + 1/(n-1) - 1/n = 1 - 1/n < 1

tk nha

đúng 10000000000000000000000000000%

9 tháng 5 2015

ta có 1/23<1/1*2*3      1/33<1/2*3*4      1/43<1/3*4*5 .... 1/n3<1/(n-1)*n*(n+1)

Vậy=1/23+1/33+...+1/n3<1/1*2*3+1/2*3*4+.....1/(n-1)*n*(n+1)

Ta có      1/1*2*3      +        1/2*3*4       +...+      1/(n-1)*n*(n+1)

 =1/2*(1/1*2-1/2*3   +      1/2*3-1/3*4    +...+  1/(n-1)*n-1/n*(n+1)

=1/2*(1/2-     1/6      +       1/6   -1/12+..........+1/(n-1)*n-1/n*(n+1)

=1/2*(1/2-1/n*(n+1))

=1/4-1/2n*(n+1)<1/4

Vì 1/2^3+1/3^3+..+1/n^3<1/4-1/2n*(n+1)<1/4

nên =>1/2^3+1/3^3+...+1/n^3<1/4

27 tháng 3 2015

1/2^2=1/2.2<1/1.2

1/3^2=1/3.3<1/2.3

1/4^2=1/4.4<1/3.4

...

1/n^2=1/n.n<1/(n-1).n

Rồi bạn tính tổng 1/1.2+1/2.3+1/3.4+...+1/(n-1).n sẽ nhỏ hơn 1

=>  1/2^2+1/3^2+1/4^2+...+1/n^2<1

15 tháng 3 2017

VT = 1/2.2 + 1/ 3.3 + 1/4.4 + ...+ 1/n.n <  1/n.n  <  1/1.2 + 1/2.3  + 1/ 3.4 + ... + 1/(n-1) n

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/n-1 + 1/n

= 1 - 1/n = n-1/n <1

vậy 1/ 2^2 + 1/3^2 + 1/4^2 +...+ n^2 < 1