\(\frac{2m+9}{14m+62}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

Gọi ƯCLN(2m + 9 ; 14m + 62) = d

=> \(\hept{\begin{cases}2m+9⋮d\\14m+62⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\14m+62⋮d\end{cases}}\Rightarrow\hept{\begin{cases}14m+63⋮d\\14m+62⋮d\end{cases}}\)

=> \(14m+63-\left(14m+62\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

=> ƯCLN(2m + 9 ; 14m + 62) = 1

=> \(\frac{2m+9}{14m+62}\)là phân số tối giản

Gọi \(\left(2m+9;14m+62\right)=d\inℕ^∗\)

Ta có : \(2m+9⋮d\Rightarrow14m+63⋮d\)(1)

\(14m+62⋮d\)(2) 

Lấy (1) - (2) ta được : \(14m+63-14m-62⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

2 tháng 7 2016

Giả sử \(x=\frac{2m+9}{14m+62}\) là p/s tối giản

X là p/s tối giản <=> 2m+9 và 14m+62 nguyên tố cùng nhau <=>2m+9 và 14m+62 có ƯCLN=1

Gọi d là ƯCLN(2m+9;14m+62)

Ta có:  2m+9 chia hết cho d => 7(2m+9) chia hết cho d=>14m+63 chia hết cho d (1)

          14m+62 chia hết cho d (2)

Lấy (1)-(2),vế theo vế:

14m+63-(14m+62) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy ƯCLN(2m+9;14m+62) là 1 hay 2m+9 và 14m+62 nguyên tố cùng nhau

=>điều giả sử là đúng

Vậy \(x=\frac{2m+9}{14m+62}\) là p/s tối giản

20 tháng 2 2017

CM 1 câu còn câu kia làm tương tự nhé!

ĐẶt UC(2m+3,m+1)=d

=> \(\hept{\begin{cases}2m+3⋮d\\m+1⋮d\end{cases}\Leftrightarrow}\)\(2m+3-2\left(m+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số tối giản

P/S: PP chung cho dạng này là đặt UC của tử và mẫu là d rồi bù trừ thích hợp để CM d=1

Nếu giả sử khi bù trừ ta ra được 1 số khác 1, ví dụ như câu b, sau khi tử - 2 lần mẫu sẽ ra \(2⋮d\)=> d=1 hoặc d=2 nhưng mẫu là 2m+3 là số lẻ không chia hết cho 2 nên d=1

23 tháng 3 2021

\(\text{Giải: }\)

\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)

\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)

\(\text{Vậy ..................................}\)

có j thắc mắc thì ib cho  mk nhé

24 tháng 3 2021

Đặt ƯCLN  \(3n+2;5n+3=d\)( d \(\inℕ^∗\))

Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1) 

\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)

Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

4 tháng 2 2022

hahaa

6 tháng 4 2020

Đặt \(\left(3n-7,5-2n\right)=d\left(d\inℕ^∗\right)\Rightarrow\hept{\begin{cases}3n-7⋮d\\5-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-7\right)⋮d\\3\left(5-2n\right)⋮d\end{cases}}}\)

\(\Rightarrow2\left(3n-7\right)+3\left(5-2n\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\Rightarrow\frac{3n-7}{5-2n}\)tối giản

12 tháng 2 2018

vì đầu bài bảo nó chưa tối giản

12 tháng 2 2018

\(\frac{a}{b}\) là phân số chưa tối giản

\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)

\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản

=> đpcm

22 tháng 2 2018

a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản

=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)

=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)

b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @