K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Từ: 
x + y + z = 0 
=> x + y = -z 
<=> (x + y)^3 = (-z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = -z^3 
<=> x^3 + y^3 + z^3 = -3x^2y - 3xy^2 
<=> x^3 + y^3 + z^3 = -3xy(x+y) 
<=> x^3 + y^3 + z^3 = -3xy(-z) 
<=> x^3 + y^3 + z^3 = 3xyz 
ok,xong r

19 tháng 6 2016

xem lại đề, chỗ 3xy2

20 tháng 6 2016

Ta có:\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)

\(\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]=0\)

\(x+y+z=0\)hoặc \(x=y=z\)(Đpcm)

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

5 tháng 5 2017

Ta có :

\(\frac{3xyz-x^3-y^3-z^3}{x+y+z}\le0\)

\(\Leftrightarrow\frac{-\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{x+y+z}\le0\)

\(\Leftrightarrow-\left(x^2+y^2+z^2-xy-xz-yz\right)\le0\)

\(\Leftrightarrow-\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\le0\)

\(\Leftrightarrow-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2\le0\) (luôn đúng)

Vậy \(\frac{3xyz-x^3-y^3-z^3}{x+y+z}\le0\forall x+y+z\ne0\)

5 tháng 5 2017

Bạn giải thích giùm mình cái dấu tương đương thứ nhất với phần sau thì mình làm được chỗ đó mình lại không hiểu cho lắm

4 tháng 8 2017

Ta có : \(x+y+z=0\Rightarrow-x-y=z\)

\(\Rightarrow x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=x^3+y^3-x^3-3x^2y-3xy^2-y^3\)

\(=-3x^2y-3xy^2=3xy\left(-x-y\right)=3xyz\) (đpcm)

3 tháng 10 2018

Ta có: \(x^3+y^3+z^3=3xyz\)

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x+y=-z\)\(\Rightarrow x+y+z=0\left(đpcm\right)\)( P/s cx ko chắc lắm :P )

3 tháng 10 2018

That's very easy 

\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x^3+y^3+3x^2y+3y^2x\right)+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\end{cases}}\)

Lại có : \(x^2+y^2+z^2-xy-yz-xz=0\)

Nhân 2 lên , nhóm vào ta được các cặp số : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\left(2\right)\)( làm tắt ) 

Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x;y\\\left(y-z\right)^2\ge0\forall y;z\\\left(x-z\right)^2\ge0\forall x;z\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\left(3\right)\)

Từ ( 2 ) ; ( 3 ) \(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Rightarrow x=y=z}\left(4\right)\)

Từ (1) ; (4) => đpcm

6 tháng 7 2016

Xét \(VT=x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right).\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right).\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=VP\)

Vậy ta có đpcm

28 tháng 10 2015

ta có x3+y3+z3=(x+y+z)(x2+y2+z2-xy-yz-xz)+3xyz(hằng đẳng thức)

Theo đề bài ->x+y+z=0