Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ thôi bạn !!!
Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3
=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại
Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)
=> ĐPCM.
Bạn xem lời giải chi tiêt ở đường link phía dưới nhé:
Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath
n là số nguyên tố lớn hơn 3 => n có thể có các dạn sau:
+) n = 3k + 1 => n2 + 17 = (3k +1)2 + 17 = 9k2 + 6k + 1 + 17 = 9k2 + 6k + 18 chia hết cho 3 => n2 + 17 không là số nguyên tố
+) n = 3k + 2 => n2 + 17 = (3k +2)2 + 17 = 9k2 + 12k + 4 + 17 = 9k2 + 12k + 21 chia hết cho 3 => n2 + 17 không là số nguyên tố
=> đpcm
Đây toán 6 nha bạn
với n =2 => \(n^2+4=8 loại\)
với n =3 => \(n^2+16= 24 loại\)
với n =4 => \(n^2+4=20 loại\)
vói n =5 => ( các bn tự thử) THõa mãn
Với n>5 => n có dạng 5k+1,5k+2,5k+3,5K+4
Sau đó tự thử nha
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
Lời giải:
Nếu $p$ không chia hết cho $3$ thì $p\equiv \pm 1\pmod 3\Rightarrow p^2\equiv 1\pmod 3$
$\Rightarrow 8p^2+1\equiv 8+1\equiv 0\pmod 3$
Mà $8p^2+1>3$ nên $8p^2+1$ không là snt (trái giả thiết)
Vậy $p=3$. Khi đó $8p^2-1=71$ là số nguyên tố (đpcm)