K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

1) biến đổi vế trái:

= a2+2ab+b2 -a2 +2ab -b2

=4ab = vế phải ( đpcm)

3;5 tuong tu

5 tháng 8 2016

1) (a + b)- (a - b)2 = a+ 2ab + b- a+ 2ab - b2 = 4ab

3) (a + b)2 - 4ab = a+ 2ab + b- 4ab = a2 - 2ab + b= (a - b)2

5) a3 + b= a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)

8 tháng 8 2020

a) Sửa đề :

\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)

\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)

\(x^4=\left(a+b\right)^4\)

b) Sửa đề:

 \(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)

\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)

\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)

\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)

\(x^5=\left(a+b\right)^5\)

Bạn có thể tự tóm tắt lại

10 tháng 8 2016

a) VP= (a-b)^2 + 4ab 

= a^2 - 2ab + b^2 + 4ab

= a^2 + 2ab + b^2 

= (a+b)^2 = VT

Vậy ...

b) VP= (a+b)^2 - 4ab 

= a^2 + 2ab + b^2 - 4ab

= a^2 - 2ab + b^2

= (a-b)^2 = VT

Vậy....

c) VP= (a+b)^3 - 3ab (a+b) 

= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2 

= a^3 + b^3  = VT

Vậy ....

10 tháng 8 2016

a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)

Vậy: (a+b)2 = (a-b)2 + 4ab.

b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy: (a-b)2 = (a+b)2 - 4ab

c) Ta có:  \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)

Đúng nha!!

8 tháng 10 2015

b)(a-b)^2
=a^2 -2ab+b^2
=a^2 +2ab+b^2 -4ab
=(a+b)^2 - 4ab
a)(a+b)^2
=a^2 +2ab+b^2
=a^2 -2ab+b^2 +4ab
=(a-b)^2 + 4ab

c)a^3+b^3

=(a^3+3a^2b+3ab^2+b^2)-(3a^2b+3ab^2)

=(a+b)^3-3ab(a+b)

d)a^3-b^3

=(a^3-3a^2b+3ab^2-b^3)+(3a^2b-3ab^2)

=(a-b)^3+3ab(a-b)

e)(a^2+b^2)(x^2+y^2)

=(a.x)^2+(b.x)^2+(a.y)^2+(b.y)^2

=((a.x)^2-2abxy+(b.y)^2)+((a.y)^2-2abxy+(b.x)^2)

=(ax-by)^2+(ay+bx)^2

l-ike giùm mik vs công sức cả buổi đấy

8 tháng 8 2018

1) (a + b)2 - (a - b)2 = 4ab

VT = (a + b) ² - ( a - b ) ² = ( a² + 2ab + b²) - (a² - 2ab + b² )  = a² + 2ab + b² - a² + 2ab - b² = 4ab = VP (đpcm)

2) (a + b) ² + (a - b)² = 2(a² + b² )

VT = (a + b)² + (a - b)² = a² + 2ab + b² + a² - 2ab + b² = 2a² + 2b² = 2 (a² + b²) = VP (đpcm)

3) (a + b)² - 4ab = (a - b)²

VT = (a + b)² - 4ab = a² + 2ab + b² - 4ab = a² - 2ab + b² = (a - b)² = VP (đpcm)

4) (a - b)² + 4ab = (a + b)²

VT = (a - b)² + 4ab = a² - 2ab + b² + 4ab = a² + 2ab + b² = (a + b)² = VP (đpcm)

5) a3 + b3 = (a + b)3 - 3ab (a + b)

VP = (a + b)3 - 3ab (a + b) = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = a3+ b3 = VT (đpcm)

6) a3 - b3 = (a - b)3 + 3ab (a - b)

VP = (a - b)3 + 3ab (a - b) = a3 - 3a2b + 3ab2 - b3 + 3a2b - 3ab2 = a3- b3 = VT (đpcm)

7) a3 + b3 + c3 - 3abc = ( a + b + c) ( a² + b² + c² - ab - bc - ac )

VP =  (a + b + c) (a2 + b2 + c2 - ab - bc - ac)

     = a3 + ab²  + ac² - a²b - abc - a²c + a²b + b3 + bc² - ab² - b²c - abc + a²c + b²c + c3 - abc - bc² - ac² 

     = a3 + b3 + c3 - 3abc = VT (đpcm) 

câu 7 mk sửa đề lại xíu nhea !!!

có j sai xót mong m.n bỏ qa cho ☺♥

8 tháng 8 2018

Cảm ơn bạn nhiều nha 

29 tháng 6 2015

(a+b)\(^2\)có khác j (a+b)\(^2\)đâu bn

18 tháng 10 2016

(a+b)2 = a2+2ab+b2=a2-2ab+4ab+b2=a2-2ab+b2+4ab=(a-b)2+4ab 

Gọi 

( a + b )2 = c

( a - b )2 = d

= c2 - d2 

Áp dụng hằng đẳng thức số a2 - b2 = ( a + b ) ( a - b ) ta có :

c2 - d2 

= ( c - d ) ( c + d )

= [ ( a +b ) - ( a - b ) ] . [ ( a + b ) - ( a - b ) ]

= 2a . 2b

= 4ab

Study well 

bn giải thích tại sao lại bằng 2a.2b zậy?