Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi 2 số lẻ là 2n + 1 và 2k + 3 (n và k là các số tự nhiên bất kì)
ta có tổng 2 số lẻ là:
2n + 1 + 2k + 3 = 2n + 2k + 4
= 2(n+k+2) chia hết cho 2 nên là số chẵn.
2) Gọi 2 số chẵn là 2x và 2k ( x và k là số tự nhiên bất kì)
Tích của chúng là:
\(2x\times2k=4xk\) chia hết cho 4.
Tương tự với 3 số tự nhiên chẵn chia hết cho 8
a) Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3 (k \(\in\) N)
Ta có : (2k + 1) + (2k + 3) = (2k + 2k) + (1 + 3) = 4k + 4 = 4.(k + 1) chia hết cho 4
b) Gọi 3 số chẵn liên tiếp là 2k ; 2k + 2 và 2k + 4 (k \(\in\) N)
Ta có : 2k + (2k + 2) + (2k + 4) = (2k + 2k + 2k) + (2 + 4) = 6k + 6 = 6.(k + 1) chia hết cho 6
GỌi 2 số lẻ liên tiếp là 2k+1 và 2k+3
=> Tổng chúng là : 2k+1+2k+3=4k+4=4.(k+1) chia hết cho 4
Cậu search mạng chứ gì
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
2 số lẻ liên tiếp là
2k+1;2k+3(k thuoc N)
tổng là:
2k+1+2k+3
=4k+4
=4(k+4)
chia het cho 4
chắc vậy .
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3
=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )
b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4
=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )
Bg
a) Gọi số chẵn nhỏ nhất trong ba số chẵn liên tiếp là 2x (x \(\inℤ\))
=> Tổng ba số chẵn liên tiếp = 2x + (2x + 2) + (2x + 4)
=> 2x + (2x + 2) + (2x + 4) = 2x + 2x + 2 + 2x + 4
=> 2x + (2x + 2) + (2x + 4) = (2x + 2x + 2x) + (2 + 4)
=> 2x + (2x + 2) + (2x + 4) = 2.3x + 6
=> 2x + (2x + 2) + (2x + 4) = 6x + 6.1
=> 2x + (2x + 2) + (2x + 4) = 6.(x + 1) \(⋮\)6
=> Tổng ba số tự nhiên liên tiếp chia hết cho 6
=> ĐPCM
b) Bg
Tổng ba số lẻ liên tiếp luôn là một số lẻ
Mà 6 chẵn
=> Tổng của ba số lẻ liên tiếp không chia hết cho 6
=> ĐPCM
c) Bg
Ta có: a \(⋮\)b và b \(⋮\)c (a, b, c \(\inℤ\))
Vì a \(⋮\)b
=> a = by (bởi y \(\inℤ\))
Mà b \(⋮\)c
=> by \(⋮\)c
=> a \(⋮\)c
=> ĐPCM
d) Bg
Ta có: P = a + a2 + a3 +...+ a2n (a, n\(\inℕ\))
=> P = (a + a2) + (a3 + a4)...+ (a2n - 1 + a2n)
=> P = [a.(a + 1)] + [a3.(a + 1)] +...+ [a2n - 1.(a + 1)]
=> P = (a + 1).(a + a3 + a2n - 1) \(⋮\)a + 1
=> P = a + a2 + a3 +...+ a2n \(⋮\)a + 1
=> ĐPCM (Điều phải chứng mình)
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
- a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
- vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
- tích của 3 số nguyên liên tiếp chia hết cho 3.
- tích của 5 số nguyên liên tiếp chia hết cho 5.
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
- (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
- 12a chia hết cho 6.
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
a) Theo đề : => a + b + c = 1 + 2 + 4 = 7 là số lẻ
b) Không CMR được vì không có nhân hay chia cộng hay trừ j hết
Khi a = 1;b = 2;c = 4 suy ra 1+2+4=7 vậy nó là số lẻ
Gọi 3 số lẻ liên tiếp là:a+1;a+3;a+5
Theo đề ta có
a+1+a+3+a+5
=a+(1+3+5)
=a+9=>chia hết cho 9