Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em học lớp 7 nên không biết anh cho em đúng đi rồi em nhờ anh em lớp 12 giải cho
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự
\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế theo vế
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
Đặt \(x=1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\) , \(y=1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\) \(\Rightarrow\begin{cases}x+y=2\\xy=\frac{1}{4}\end{cases}\)
Ta có vế trái : \(\frac{x}{1+\sqrt{x}}+\frac{y}{1-\sqrt{y}}=\frac{x-x\sqrt{y}+y+y\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}=\frac{\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}\)
Xét tử số : \(\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=2-\frac{1}{2}\left(\frac{\sqrt{3}+1}{2}-\frac{\sqrt{3}-1}{2}\right)=\frac{3}{2}\)
Xét mẫu số : \(\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)=\left(1+\frac{\sqrt{3}+1}{2}\right)\left(1-\frac{\sqrt{3}-1}{2}\right)=\left(1+\frac{1}{2}\right)^2-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{2}\)
Vậy : \(\frac{x}{1+\sqrt{x}}+\frac{y}{1-\sqrt{y}}=\frac{\frac{3}{2}}{\frac{3}{2}}=1\) hay \(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1\) (đpcm)
\(=\left[\dfrac{2+\sqrt{3}}{2}:\left(1+\sqrt{\dfrac{4+2\sqrt{3}}{4}}\right)\right]+\left[\dfrac{2-\sqrt{3}}{2}:\left(1-\sqrt{\dfrac{4-2\sqrt{3}}{4}}\right)\right]\)
\(=\left(\dfrac{2+\sqrt{3}}{2}:\dfrac{2+\sqrt{3}+1}{2}\right)+\left(\dfrac{2-\sqrt{3}}{2}:\dfrac{2-\sqrt{3}+1}{2}\right)\)
\(=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=1\)