Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}.\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)( vô nghiệm )
\(\Rightarrow x^2-3x+4\)vô nghiệm
a) Ta có : \(f\left(x\right)=x^2-10x+27=\left(x^2-10+25\right)+2=\left(x-5\right)^2+2\ge2>0\)
Vậy f(x) > 0 => Vô nghiệm.
b) Tương tự : \(g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}=\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}\right)+\frac{4}{9}-\frac{1}{9}=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)
Vậy g(x) > 0 => Vô nghiệm.
x2 + 4x + 2018
=> x2 + 2×2x +22 + 2014
=> (x+2)2 + 2014
=> (x+2)2 >= 0
VÀ 2014 > 0
=> (x+2) + 2014 > 0
=>x2 + 4x +2018 ko có nghiệm
K MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Ta có : \(x^2+4x+2018\)
\(=\left(x^2+4x+4\right)+2014\)
\(=\left(x+2\right)^2+2014\)
Mà \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\) đa thức trên luôn lớn hơn hoặc bằng 2014
Vậy đa thức trên vô nghiệm
A=(x-3)(x^2+3x+9)-x(x^2-2)-2(x-1) nhân vào
A=x^3+3x^2-9x-3x^2-9x-27-x^3+2x-2x+2 khử hết các hạng tử đồng dạng
A=-27+2
A=-25
Sau khi rút gọn biểu thức A không có biến x nên A ko phụ thuộc vào x
\(x^2-3x+4\)
\(=x^2-2.x.\frac{3}{2}+\left(\frac{2}{3}\right)^2+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0;\frac{7}{4}>0\)
=> Đa thưc vô nghiệm
\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\) ( vô nghiệm )
Vậy \(x^2-3x+4\) vô nghiệm