Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)
\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)
Vậy phương trình vô nghiệm
p/s: mk ko bt cách trình bài => sai sót bỏ qua
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+x^2\right)-\left(x^3+x\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)-x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+\left(x^2-x+\frac{1}{4}\right)+\left(x^2+\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)=0\)
Có : \(\left(x^2-x\right)^2\ge0\)
\(\left(x-1\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(x^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+\left(x-\frac{1}{2}\right)^2+\left(x^2+\frac{3}{4}\right)\ge\frac{3}{4}\)
Vậy phương trình vô nghiệm.(ĐPCM)
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(3x^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy phương trình có nghiệm \(x=0\) và \(x=1\)
Đề sai nhé
\(b)\) Ta có :
\(x^2+2x+3\)
\(=\)\(\left(x^2+2x+1\right)+2\)
\(=\)\(\left(x+1\right)^2+2\ge2>0\)
Vậy đa thức \(x^2+2x+3\) vô nghiệm
Em mới lớp 7 có gì sai anh thông cảm nhé
\(a, 2x^2 + 5x + 10 = x^2 + 5x - 11\)
\(<=> x^2 + 21 = 0 \)
\(Do x^2 + 21 > 0\)
=> Pt vô nghiệm
\(b, 2x^2 - 6x + 7 = 0\)
\(<=> 2(x^2 - 3x+7/2)=0\)
\(<=> (x-3/2)^2 +7/4 = 0 \)
Tương tự như trên thì pt vô nghiệm
\(c, |x^2 + 3x+20| + |x-3| = 0\)
Ta có : \(|x^2 + 3x+20| = |(x+3/2)^2 + 17,75| > 0\)
\(=> |x^2 + 3x+20| + |x-3| > 0\)
=> Pt vô nghiệm
chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm
a ) \(x^4+2x^2-6x+7=0\)
\(\Leftrightarrow x^4-2x^2+1+4x^2-6x+6=0\)
\(\Leftrightarrow\left(x^2-1\right)^2+4x^2-2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}=0\)
\(\Leftrightarrow\left(x^2-1\right)^2+\left(2x-\dfrac{3}{2}\right)^2=-\dfrac{15}{4}\left(VL\right)\)
=> PTVN
b ) \(\left|x-2\right|\ge0;\left|x^2-4x+3\right|\ge0\forall x\)
\(\Rightarrow\left|x-2\right|+\left|x^2-4x+3\right|\ge0\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x^2-4x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\end{matrix}\right.\)
Lại có : \(\left|x-2\right|+\left|x^2-4x+3\right|=0\) ( * )
Thay \(x=2\) vào ( * ) , ta có :
\(0+\left|2^2-4.2+3\right|=0\)
\(\Leftrightarrow0+\left|4-8+3\right|=0\Leftrightarrow0+1=0\Leftrightarrow1=0\)
( ***** ) (1)
Tương tư thay \(x=1\) \(\Rightarrow1=0\left(VL\right)\) (2)
thay \(x=3\Rightarrow1=0\left(L\right)\) (3)
Từ (1) ; (2) ; (3) \(\Rightarrow PTVN\)