Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\left(1\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2-a\left(b-c-d-e\right)\ge0\)
\(\Leftrightarrow\left(b^2-ab+\frac{1}{4}a^2\right)+\left(c^2-ac+\frac{1}{4}a^2\right)+\left(d^2-ad+\frac{1}{4}a^2\right)+\left(e^2-ae+\frac{1}{4}a^2\right)\ge0\)
\(\Leftrightarrow\left(b+\frac{1}{2}a\right)^2+\left(c+\frac{1}{2}a\right)^2+\left(d+\frac{1}{2}a\right)^2+\left(e+\frac{1}{2}a\right)^2\ge0\left(2\right)\)
( 2 ) đúng => ( 1 ) đúng
Tham khảo nha \(\)
1. Rút gọn:
a/ \(\left(x-3\right)\left(x^2+3x+9\right)+\left(54+x^3\right)\)
= \(x^3+3x^2+9x-3x^2-9x-27+54+x^3\)
= \(2x^3+27\)
b/ \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=27x^3-9x^2y+3xy^2+9x^2y-3xy^2+y^3-27x^3+9x^2y+3xy^2-9x^2y-3xy^2-y^3\)
\(=\left(27x^3-y^3\right)-\left(27x^3+y^3\right)\)
\(=27x^3-y^3-27x^3-y^3=-2y^3\)
2.Chứng minh rằng:
a/ \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
Xét VP có:
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
=> VT=VP
=> \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
b/ \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Xét VP có:
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
=> VT=VP
=> \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
Chúc bạn học tốt ♥khong bt ai hay sao ma con tra loi gium nua cho hung du sao van cam on
Trieu Trong Thai
CM a3+b3+c2 >= ab+bc+ac (*)
2a^2 +2b^2 +2c^2 - 2ab -2bc -2ac = (a-b)^2 + (b-c)^2 + (a-c)^2 >= 0
từ * => a^2 +b^2+c^2 +2ab+2bc+2ac >= 3ab+3bc+3ac <=> (a+b+c)^2 >= 3ab +3ac+3bc
từ * => 2ab +2ac+2bc+ a^2+b^2+c^2 =< 3a^2+3b^2+3c^2 <=> (a+b+c)^2 =< ...
de bai sai sua lai la
\(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
bien doi ve phai ta co:
\(\left(a-b\right)\left(a+b\right)^2\)
\(=a^3+ab^2-a^2b-b^3\)
\(=a^3-b^3+ab\left(b-a\right)\)= ve trai
vay \(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
Bài làm :
Ta có :
\(\left(a^2+2017\right)\left(b^2+2017\right)\left(c^2+2017\right)\)
\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left[\left(a^2+ab\right)+\left(bc+ca\right)\right]\left[\left(b^2+ab\right)+\left(bc+ca\right)\right]\left[\left(c^2+bc\right)+\left(ab+ca\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(b+a\right)\right]\left[b\left(b+a\right)+c\left(b+a\right)\right]\left[c\left(c+b\right)+a\left(b+c\right)\right]\)\(=\left(a+b\right)\left(c+a\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)\)
\(=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
=> Điều phải chứng minh
Ta có :
(a + b + c)2 + a2 + b2 + c2 = (a + b)2 + (b + c)2 + (c + a)2
(a + b + c)2 + a2 + b2 + c2 = 2a2 + 2b2 + 2c2 + 2ab + 2bc + 2ca
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca (1)
Lại có :
(a + b + c)2 = [(a + b) + c]2
= (a + b)2 + 2c(a + b) + c2
= a2 + 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ca
Vậy , (1) đúng
=> (a + b + c)2 + a2 + b2 + c2 = (a + b)2 + (b + c)2 + (c + a)2
\(a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2\ge2ab\)
Áp dụng vào ta được :
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)
a, VP:-(b-a)3=-(b3-3b2a+3ba2-a3)=a3-3a2b+3ab2-b3=(a-b)3 Kết luận:VP=VT
b, VT:(-a-b)2=[(-a)+(-b)]2=(-a)2+2(-a)(-b)+(-b)2=a2+2ab+b2=(a+b)2 Kết Luận:VT=VP
Đổi dầu là được