K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

a) Ta có:

\(VT=\left(a-b\right)^2\)

\(=a^2-2ab+b^2\)

\(=a^2+2ab+b^2-4ab\)

\(=\left(a+b\right)^2-4ab=VP\left(dpcm\right)\)

b) Ta có:

\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=\left(x^2+y^2\right)+\left(x^2+y^2\right)\)

\(=2\left(x^2+y^2\right)=VP\left(dpcm\right)\)

7 tháng 6 2016

a)\(\left(a+b+c\right)^2+a^2+b^2+c^2=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\left(đccm\right)\)

7 tháng 6 2016

cảm ơn bạn nhiều nha

1 tháng 7 2019

\(a,\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)

\(b,\left(x^2+y^2\right)-4x^2y^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

10 tháng 9 2018

\(a.\) \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

\(\left(a-b\right)^2+2ab-2ab=\left(a+b\right)^2-4ab\)

\(\left(a-b\right)^2=a^2+2ab+b^2-4ab\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(\left(a-b\right)^2=\left(a-b\right)^2\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)

Tương tự mấy câu kia

b: \(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=2a^2+2b^2+2c^2+2ab+2bc+2ac\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(a^2+2ac+c^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(a+c\right)^2\)

c: \(x^4+y^4-2\left(x^2+xy+y^2\right)^2\)

\(=\left(x^2+y^2\right)^2-2x^2y^2-2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)

\(=-\left(x^2+y^2\right)^2-4x^2y^2-4xy\left(x^2+y^2\right)\)

\(=-\left(x^2+2xy+y^2\right)^2=-\left(x+y\right)^4\)

=>\(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)

30 tháng 10 2020

Không có mô tả.

30 tháng 10 2020

a) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)\)

\(=a^3-b^3-\left(a^3+b^3\right)\)

\(=a^3-b^3-a^3-b^3\)

\(=-2b^3=VP\)(đpcm)

16 tháng 10 2016

a) Biến đổi vế trái ta có:

\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2\left(a^2+b^2\right)=VP\)

Vậy đẳng thức trên được chứng minh

b) Biến đổi vế trái ta có:

\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ca+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=VP\)

Vậy đẳng thức trên được chứng minh

c)Biến đổi vế trái ta có:

\(\left(x+y\right)^4+x^4+y^4\)

\(=x^4+y^4+4x^3y+6x^2y^2+4xy^3+x^4+y^4\)

\(=2\left(x^4+y^4+2x^2y^2\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)

\(=2\left(x^2+y^2\right)^2+4xy\left(x^2+y^2\right)+2x^2y^2\)

\(=2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)

\(=2\left(x^2+xy+y^2\right)^2=VP\)

Vậy đẳng thức trên được chứng minh

nhìn zậy thoy chứ dễ lắm mik làm vd 2 bài còn lại bn làm có gì bí thì hỏi mik

a) biến đổi vế trái ta có : \(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)( = vế phải )

b) BĐVT ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)= VP

 

10 tháng 9 2018

a. Biến đổi vế phải, ta có:

(a+b)2- 4ab

=  a2+2ab+b2-4ab 

=a2+2ab-4ab+b2

= a2-2ab+b2

= (a-b)2

Vậy: ( a - b )2 = ( a + b )2 - 4ab

Mik chỉ làm đc câu a thui àk

28 tháng 3 2018

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

Dáu "="  xảy ra  \(\Leftrightarrow\) \(x=y=z=1\)

a,b,c,d > 0 ta có:

- a < b nên a.c < b.c

- c < d nên c.b < d.b

Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)