\(-9x^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

\(-9x^2+12x-15\)

\(=-\left[\left(3x\right)^2-2.3x.2+2^2\right]-11\)

\(=-\left(3x-2\right)^2-11\)

Ta có: \(\left(3x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11\le-11\forall x\)

\(\Rightarrow-\left(3x-2\right)^2-11< 0\forall x\)

\(\Rightarrow-9x^2+12x-15< 0\forall x\)

                                           đpcm

Tham khảo nhé~

DD
15 tháng 5 2021

\(-5-\left(x-1\right)\left(x+2\right)=-5-\left(x^2+x-2\right)=-5-x^2-x+2\)

\(=-x^2-x-3=-\left(x+\frac{1}{2}\right)^2-\frac{11}{4}< 0,\forall x\inℝ\)

10 tháng 7 2018

\(-9x^2+12x-15=\left(-11\right)-\left(9x^2-12x+4\right)=\left(-11\right)-\left(3x-2\right)^2\le-11< 0\)

\(-5-\left(x-1\right).\left(x+2\right)=-5-\left(x^2+x-2\right)=-\left(x^2+x+3\right)=-\left(\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)

9 tháng 7 2017

Ta có : 9x2 - 6x + 5

= (3x)2 - 6x + 1 + 4

= (3x - 1)2 + 4

Mà : (3x - 1)\(\ge0\forall x\)

Nên : (3x - 1)2 + 4 \(\ge4\forall x\)

Suy ra : (3x - 1)2 + 4 \(>0\forall x\)

Vậy biểu thức sau luôn luôn dương 

9 tháng 7 2017

thanks bạn nha ^^

\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)

                 \(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)

15 tháng 8 2019

a, TA CO X -3X+3=X2-3X+(3/2)2 +3/4=(X-3/2)2+3/4 >0

TUONG TU

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

1 tháng 8 2023

Mình cảm ơn nha

 

5 tháng 11 2017

Q = x^2-12x+36+5

= x^2 - 2.x.6 + 6^2 + 5 = (x-6)^2 + 5 >=5 với mọi x

=> Q luôn ko âm với mọi giá tri biến ( ĐPCM )

5 tháng 11 2017

Ta có: Q = x^2 - 12x + 41

= x^2 - 2.x.6 + 62 + 5

= (x-6)2 + 5 
Vì bình phương 1 số luôn dương và 5>0 nên Q >0