Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm MIN :
a) \(9x^2-4x+11=\left(3x\right)^2-2.3x.\frac{4}{6}+\frac{4}{9}-\frac{95}{9}\)
\(=\left(3x-\frac{4}{6}\right)^2-\frac{95}{9}\ge\frac{95}{9}\)
Dấu "=" xảy ra \(\Leftrightarrow x=?\)
\(2x-x^2-10=-\left(x^2-2x+1\right)+9=-\left(x-1\right)^2+9\ge0\)
1.
2x - x2 - 10
= - (x2 - 2x + 10)
\(=\left[\left(x^2-2x+1\right)+9\right]\)
= - (x - 1)2 - 9
Vì - (x - 1)2 \(\le\) 0 vs mọi x và - 9 < 0
nên - (x - 1)2 - 9 < 0
hay 2x - x2 - 10 < 0
sao dài thế @@ chộp bài nào làm bài nấy ha
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0
\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)
=> a chia hết cho 7 => a=7k với k thuộc Z
Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu
=>\(\sqrt{7}\) là số vô tỉ (đpcm)
Câu 1:
Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)
\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)
Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)
Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)
Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)
\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết
Vậy \(\sqrt{7}\) không phải là số hữu tỉ
\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
Câu 1: giả sử √7 là số hữu tỉ
=> √7 = a/b (a,b ∈ Z ; b ≠ 0)
không mất tính tổng quát giả sử (a;b) = 1
=> 7 = a²/b²
<=> a² = b7²
=> a² ⋮ 7
7 nguyên tố
=> a ⋮ 7
=> a² ⋮ 49
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7
=> (a;b) ≠ 1 (trái với giả sử)
=> giả sử sai
=> √7 là số vô tỉ
Lời giải:
\(A=\sqrt{x^2-4x+7}=\sqrt{x^2-4x+4+3}=\sqrt{(x-2)^2+3}\)
Vì \((x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=\sqrt{(x-2)^2+3}\geq \sqrt{0+3}=\sqrt{3}\)
Vậy GTNN của $A$ là $\sqrt{3}$ khi $(x-2)^2=0$ hay $x=2$
----------------
\(B=1+\sqrt{2x-x^2+1}=1+\sqrt{2-(x^2-2x+1)}\)
\(=1+\sqrt{2-(x-1)^2}\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2-(x-1)^2\leq 2\)
\(\Rightarrow B=1+\sqrt{2-(x-1)^2}\leq 1+\sqrt{2}\)
Vậy GTLN của $B$ là $1+\sqrt{2}$. Dấu "=" xảy ra khi \((x-1)^2=0\) hay $x=1$
\(2x^2-4x+12\)
\(=2\left(x^2-2x+6\right)\)
\(=2\left(x^2-2x+1+5\right)\)
\(=2\left[\left(x-1\right)^2+5\right]\)
\(=2\left(x-1\right)^2+10\ge10>0\forall x\)
( Do \(2\left(x-1\right)^2\ge0\forall x\) )
Ta có đpcm
\(x^2+2x+7\)
\(=\left(x+1\right)^2+6\ge6>0\forall x\)
Ta có đpcm