Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1
Giả sử căn 7 là số hữu tỉ Vậy căn 7 bằng a/b. Suy ra 7 bằng a bình / b bình. Suy ra a bình bằng 7b bình Suy ra a chia hết cho 7 Gọi a bằng 7k suy ra a bình bằng 7b bình Suy ra (2k) bình bằng 2b bình suy ra 4k bình bằng 2b bình suy ra 2k bình bằng b bình Suy ra ƯCLN(a,b)=2 Trái với đề bài =>căn 7 là số vô tỉ
1)
Giả sử \(\sqrt{7}\) không phải số vô tỉ mà là số hữu tỉ
\(\sqrt{7}=\frac{a}{b}\) ( a;b = 1 ) ( vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b )
\(\Rightarrow\frac{a^2}{b^2}=7\)
\(\Rightarrow a^2=7\times b^2\)
Vì a và b là 2 số nguyên tố cùng nhau nên để \(a^2=7\times b^2\) thì \(a^2⋮7\)
Mà 7 là số nguyên tố \(\Rightarrow a⋮7\)\(\Rightarrow a\) có dạng \(a=7k\)
Lại có :\(a^2=7b^2\) \(\Rightarrow49k^2=7b^2\Rightarrow7k^2=b^2\)
Tương tự như trên thì \(b⋮7\)
Do a và b đều chia hết cho 7 nên trái với giả thiết ta đặt ra
\(\Rightarrow\sqrt{7}\) là số vô tỉ (đpcm)
trả lời:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow2ad.bc-2ad.bc=0\)
\(\Leftrightarrow0=0\left(Đ\right)\)
Vậy đẳng thức đã cho là đúng.
Câu 4:
a) C/m tương đương
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng
=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)
b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)
Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)
+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)
+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)
Cộng vế vs vế ta có:
\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)
c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:
\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)
=> \(ab\le\dfrac{12}{5}\)
Vậy GTLN của P là \(\dfrac{12}{5}\)
Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ
\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
G/s căn 7 là số hữu tỉ => căn 7 viết dưới dạng phân số tói giản a/b ( trong đó UCLN (a,b) = 1)
=> căn 7 = a/b => 7 = a^2 / b^2 => 7b^2 = a^2 => a^2 chia hết cho 7 => a chia hết cho 7 (1)
DẶt a = 7t thay a =7t vào a^2 = 7b^2
=> 49 t^2 = 7b^2 => b^2 = 7 t^2 => b^2 chia hết cho 7 => b chia hết cho 7 (2)
Từ (1) và (2) => a,b có một ước chung là 7 trái với g/s UCLN (a,b) = 1
Vậy căn 7 là số vô tỉ
\(\Leftrightarrow\dfrac{a^4+b^4+4a^2b^2}{a^2b^2}\ge\dfrac{3\left(a^2+b^2\right)}{ab}\)
\(\Leftrightarrow a^4+b^4+4a^2b^2\ge3ab\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a^4+b^4-2a^2b^2\right)+6a^2b^2-3ab\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2-3ab\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)^2-3ab\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2-ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a-\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\right]\ge0\) (luôn đúng)