K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

Giải casio được không?/

19 tháng 7 2016

Ta sẽ chứng minh với \(n\ge1\)thì \(P_n=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2n-1\right)^2}\right)=\frac{-2n-1}{2n-1}\)

Với \(n=1\)mệnh đề đúng vì \(1-4=-3=\frac{-2.1-1}{2.1-1}\)

Giả sử mệnh đề đúng với \(n=k\)tức là \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)=\frac{-2k-1}{2k-1}\)

Ta sẽ chứng minh mệnh đề đúng với \(n=k+1\)tức là chứng minh \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-\left(2k+3\right)}{2k+1}\)

Thật vậy \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-2k-1}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}\)

\(=\frac{-\left(2k+1\right)}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}=\frac{-\left(2k+3\right)}{2k+1}.\)

Theo nguyên lý quy nạp, mệnh đề đúng với mọi \(n\ge1\)

17 tháng 2 2017

23 chuyên đề giải 1001 bài toán sơ cấp ,mk nhớ có trog quyển này

19 tháng 2 2017

ĐÚng rồi thuộc trạng 73 dòng 9

10 tháng 3 2019

ta có : \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2.\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}\)

\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n.\sqrt{n+1}}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

NV
4 tháng 11 2019

\(\left(n+1\right)\left(n+2\right)...\left(2n\right)=\frac{\left(2n\right)!}{n!}=\frac{1.3.5...\left(2n-1\right).2.4.6...2n}{n!}\)

\(=\frac{1.3.5...\left(2n-1\right).\left(1.2\right)\left(2.2\right)\left(3.2\right)...\left(n.2\right)}{n!}=\frac{1.3.5...\left(2n-1\right).n!.2^n}{n!}\)

\(=1.3.5...\left(2n-1\right).2^n⋮2^n\)

NV
11 tháng 8 2020

Bạn ghi đề bài sai thì phải, \(\frac{1}{\left(4n-1\right)\left(4n+1\right)}\) không hề phù hợp với các số hạng đầu tiên

NV
19 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Mai Hương - Toán lớp 9 | Học trực tuyến