K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2021

Xét hiệu a3 + b3 - (a + b) = a3 - a + b3 - b = a(a2 - 1) + b(b2 - 1) 

                                                                  = (a - 1)a(a + 1) + (b - 1)b(b + 1) 

Nhận thấy (a - 1)a(a + 1) \(⋮6\) (tích 3 số nguyên liên tiếp)

và \(\left(b-1\right)b\left(b+1\right)⋮6\)

=> (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6

=> a3 + b3 - (a + b)  \(⋮\)6

=> a3 + b3  \(⋮\)6 khi và chỉ khi a + b  \(⋮\)6

30 tháng 6 2016

a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B

Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.

b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)

2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi  a - 2b chia hết cho 5.

c) Tương tự: P = 3x2 - 10y = 13x2  - 10x2 - 10y = 13x2 - 10(x2 + y)

10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.

30 tháng 6 2016

b,Hướng dẫn: Xét A+b or A-B or mA+nB or mA-nB

5 tháng 8 2018

1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)

\(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)

\(\Rightarrow n^3+11n⋮6\)

2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)

\(\Rightarrow n^3-19n⋮6\)

15 tháng 9 2019

1)Ta có: n^3 + 11n

= n^3 +n^2 -n^2 -n+12n

= n^2(n+1) -n(n+1) +12n

= (n+1)(n^2-n) +12n

= (n+1)n(n-1) +12n

Vì (n+1)n(n-1) là 3 số tự nhiên liên tiếp nên

(n+1)n(n-1) chia hết cho 6

12n chia hết cho 6 với mọi n

=> n^3 + 11n chia hết cho 6 với mọi n

10 tháng 8 2019

gợi ý nếu x chia hết cho 3 và x-y chia hết cho 3 thì y chia hết cho 3

Áp dụng xét hiệu a^3+b^3-a-b

Đi CM hiệu này chia hết cho 3

C2: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)chia hết cho 3

Suy ra a+b chia hết cho 3

19 tháng 9 2018

Vì a, b không chia hết cho 3 nên a, b có dạng \(3k+1\) hoặc \(3k+2\) \(\left(k\inℤ\right)\)

* Nếu \(a=3k+1\)\(\Rightarrow\)\(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1 

\(b=3k+1\)\(\Rightarrow\)\(b^2=\left(3k+1\right)^2=9k^2+1\) chia 3 dư 1 

* Nếu \(a=3k+2\)\(\Rightarrow\)\(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(b=3k+2\)\(\Rightarrow\)\(b^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1 

\(\Rightarrow\)\(a^2,b^2\) chia 3 dư 1 

\(\Rightarrow\)\(a^2-b^2⋮3\)

Lại có : 

\(a^6-b^6=\left(a^2\right)^3-\left(b^2\right)^3=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)\left[\left(a^4-2a^2b^2+b^4\right)+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]\)

Xét \(\left(a^2-b^2\right)⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)^2+3a^2b^2⋮3\)

\(\Rightarrow\)\(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)^2+3a^2b^2\right]⋮9\)

Hay \(a^6-b^6⋮9\) ( đpcm ) 

Chúc bạn học tốt ~ 

1 tháng 9 2019

1) a, Chứng minh a^5-a chia hết cho 5

b, Chứng minh a^7-a chia hết cho 7

1 tháng 9 2019

Phạm Lý câu tl này là bỏ.

Câu 1 mik gửi link r đs

3 tháng 11 2017

\(a^3+b^3+c^3\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(a+b+c\right)\)

Ta có\(a^3-a=\left(a-1\right)a\left(a+1\right)\)chia hết cho 6 bạn tự CM

Tương tự \(b^3-b\)\(c^3-c\)

Mà \(a+b+c⋮6\)

Twg các điều trên suy ra \(a^3+b^3+c^3⋮6\)

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

23 tháng 4 2020

Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3

Mà (2,3)=1 => a3-a chia hết cho 6

=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6

Vậy S chia hết cho 6 <=> P chia hết cho 6