Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=a^3+b^3+c^3-3abc=c^3-3cba+b^3+a^3\)
\(=a^3+b^3+c^3-3abc-\left(b^3+c^3\right)=c^3-3cba+b^3+a^3-\left(b^3+c^3\right)\)
\(=a^3-3abc-\left(-3abc+a^3\right)=-3cba+a^3-\left(-3cab+a^3\right)\)
=> ĐPCM
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Nhưng theo mình thấy a^3+b^3+c^3 không thể đổi thành (a+b+c)^3
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
A = a3 + b3 +c3 -3abc thành nhân tử.
Lời giải:
Từ (a+b)3= a3 + 3a2b +3ab2 + b3
= a3 + b3 + 3ab (a+b)
Ta suy ra: a3 + b3 = (a+b)3 - 3ab (a+b) (1)
áp dụng hằng đẳng thức (1) vào giải bài toán ta có:
A = (a3 + b3) + c3 - 3abc
= (a+b)3 - 3ab (a+b) + c3 - 3abc
= (a+b)3 + c3 - 3ab (a+b) - 3abc
= (a+b+c) (a2 +2ab + b2 -ac - bc + c2 - 3ab)
= (a+b+c) (a2+ b2 +c2 -ab - bc - ac) (*)
\(a)\) Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm )
Vậy \(a^3+b^3+c^3=3abc\)
Chúc bạn học tốt ~
a, a+b+c=0 => a+b=-c
=>(a+b)3=(-c)3
=>a3+3a2b+3ab2+b3=-c3
=>a3+3ab(a+b)+b3=-c3
Mà a+b=-c
=>a3-3abc+b3=-c3
=>a3+b3+c3=3abc (đpcm)
b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
mà a3+b3+c3=3abc (bài a)
\(\Rightarrow P=\frac{3abc}{abc}=3\)
Vậy P=3
a^3 +b^3+c^3-3abc
=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2+c^3-3abc
=(a+b)^3+c^3-3ab(a+b+c)
= (a+b+c)((a+b)^2+(a+b)c+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+2ab+b^2+ac+bc+c^-3ab)
=(a+b+c)(a^2+b^2+c^2+ab+bc+ac)
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(VT=a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2-3abc+c^2\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\left(đpcm\right)\)
b) Xét VP ta có :
\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=a^3+ab^2+ac^2-ab^2-abc-ca^2+ba^2+b^3+bc^2-ab^2-bc^2-abc+ca^2+cb^2+c^3-abc-bc^2-c^2a\)
\(=a^3+b^3+c^3-abc-abc-abc\)
\(=a^3+b^3+c^3-3abc\)
\(=VT\)
Vậy đẳng thức đã được Cm