K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

Ta xét:

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\)

Gọi bội chung nhỏ nhất của \(1,2,3,...,2017\) là \(2^{10}.B\) (với B là tích các số nguyên tố khác 2)

Trong các số từ 1 đến 2017 chỉ có 1024 là số duy nhất có thể phân tích thành tích của các lũy thừa của các số nguyên tố trong đó có \(2^{10}\) còn các số còn lại thì tối đa chỉ phân tích được trong tích có tối đa là \(2^9\).

Vậy khi quy đồng tổng \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\) thì ngoại trừ \(\frac{1}{1024}\)thì sau khi quy đồng có tử là số lẻ. Còn các số khác sẽ có tử đều là số chẵn.

\(\Rightarrow\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}=\frac{sl}{sc}\)(sl: Số lẻ; sc: số chẵn)

Ta lại có: \(1+2+3+...+2017=\frac{2017.2018}{2}=2035153=sl\)

\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right).\left(1+2+...+2017\right)=\frac{sl}{sc}.sl=\frac{sl}{sc}\)

Ta có tử là số lẻ, mẫu là số chẵn nên tử không bao giờ chia hết cho mẫu 

Vậy A không thể là số nguyên được.

25 tháng 4 2017

a là số nguyên

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

5 tháng 4 2017

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)

12 tháng 5 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Leftrightarrow x+2=41\)

\(\Leftrightarrow x=41-2\)

\(\Leftrightarrow x=39\)

5 tháng 4 2020

???????????????????????????????????????????????????????

14 tháng 5 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2017^2}-1\right)\left(\frac{1}{2018^2}-1\right)\)

\(A=\frac{\left(1-2^2\right)\left(1-3^2\right)\left(1-4^2\right)...\left(1-2018^2\right)}{2^23^24^2...2018^2}\)

\(A=\frac{-1\cdot3\cdot\left(-2\right)\cdot4\cdot\left(-3\right)\cdot5\cdot...\cdot\left(-2016\right)\cdot2018}{2018!^2}\)

\(A=\frac{2016!\cdot3\cdot4\cdot5\cdot...\cdot2018}{2018!^2}=\frac{2016!\cdot2018!}{2018!^2\cdot2!}=\frac{2016!}{2!2018!}=\frac{1}{2!\cdot2017\cdot2018}>0>-\frac{1}{2}=B\)

7 tháng 9 2018

A = (1/2+1)(1/2-1)(1/3+1)(1/3-1)....(1/2018+1)(1/2018-1) đặt các tích phần tử có dấu + là X, tích các phần tử có dấu - là Y => A= X.Y

X = 3/2.4/3.5/4.....2019/2018 = 2019/2

Y= (-1/2)(-2/3)(-3/4)...(-2017/2018) = -1/2018 (tích của 2017 số <0)

A= X.Y = -2019/2018.1/2 < B= -1/2