K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

A=5+52+53+....+59+510

=> A=(5+52)+(53+54)+...+(59+510)

=> A=5(1+5)+53(1+5)+....+59(1+5)

=> A=5.6+53.6+....+59.6

=> A=6(5+53+....+59)

=> A chia hết cho 6 (đpcm)

16 tháng 4 2020

A=5+52+53+....+59+510

=> A=(5+52)+(53+54)+...+(59+510)

=> A=5(1+5)+53(1+5)+....+59(1+5)

=> A=5.6+53.6+....+59.6

=> A=6(5+53+....+59)

=> A chia hết cho 6 (đpcm)

16 tháng 3 2024

a;

A = 109 + 108 + 107 

A = 107.(102 + 10 + 1)

A = 106.2.5.(100 + 10 + 1)

A = 106.2.5.111

A = 106.2.555 ⋮ 555 (đpcm)

16 tháng 3 2024

b;

B = 817 - 279 - 919

B = 914 - 39.99 - 919

B = 914 - 3.38.99 - 919

B = 914 - 3.94.99 - 919

B = 914 - 3.913 - 919

B = 913.(9 - 3 - 96)

B = 913.(9 - 3 - \(\overline{..1}\))

B = 913.(6 - \(\overline{..1}\))

B = 913.\(\overline{..5}\)

B ⋮ 9; B ⋮ 5

\(\in\) BC(9; 5)  = 9.5 = 45

B ⋮ 45 (đpcm)

 

7 tháng 10 2015

mình chỉ cho bạn ghi mủ nè nhấn vào x2

25 tháng 10 2023

Tổng a có ssh là (8-1):1-1=8

Vì 8:2=4

Đo đó ta nhóm tổng a thành 4 nhóm mỗi nhóm có 2 số hạng 

(5+5²)+(5³+5⁴)+...+(5⁷+5⁸)

5×(1+5)+5³×(1+5)+5⁷×(1+5)

5×6+5³×6+...+5⁷×6

6×(5+5³+...+5⁷)

Vì 6:6 nên a:6

VậyA:6

 

 

 

 

12 tháng 11 2015

Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau  ma khoe.

8 tháng 1 2021

A=(1+11+11.1

thôi cậu tự làm dễ mà

16 tháng 3 2020

\(B=2+2^2+2^3+2^4+...+2^{10}\)

=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)

Trả lời:

\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^3+...+2^9\right)\)

Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)

=> đpcm

Vậy B chia hết cho 3

#Huyền Anh

16 tháng 3 2020

\(B=2+2^2+2^3+2^4+...+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^2\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^2+...+2^9\right)⋮3\)

\(\Rightarrow B⋮3\)

..

16 tháng 3 2020

\(B=2+2^2+2^3+...+2^{10}\)

    =\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

   =\(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

   =\(2.3+2^3.3+2^5.3+2^7.3+2^9.3\)

  =\(3\left(2+2^3+2^5+2^7+2^9\right)⋮3\)

Vậy \(B⋮3\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

26 tháng 11 2017

50+51+52+53+...+52010+52011

= 1+5+52+53+...+52010+52011

=(1+5)+(52+53)+...+(52010+52011)

= (1+5)+52(1+5)+...+52010(1+5)

= (1+5)(1+52+...+52010)

= 6.(1+52+...+52010) chia hết cho 6

=> đpcm