Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(5^{2005}+5^{2003}=5^{2003}\left(5^2+1\right)=5^{2003}\cdot26\)
Vì \(26⋮13\)
nên \(5^{2003}\cdot26⋮13\)
hay \(5^{2005}+5^{2003}⋮13\)
Bài 1:
a,\(5^{2005}+5^{2003}=5^{2003}(25+1)=26.5^{2003}\vdots13(đpcm)\)
b,\(a^2+b^2+1\ge ab+a+b\)
<=>\(2a^2+2b^2+2\ge2ab+2a+2b\)
<=>\((a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)\ge0\)
<=>\((a-b)^2+(a-1)^2+(b-1)^2\ge0(tm)\)
=> đpcm
a) 52005 + 52003 = 52003 ( 52 + 1 ) = 52003 . 26 = 52003 . 2 .13
=> 52005 + 52003 chia hết cho 13
b) a2 + b2 +1 \(\ge\) ab + a + b
\(\Leftrightarrow\) 2a2 + 2b2 + 2 ≥ 2ab + 2a + 2b
\(\Leftrightarrow\)(a2 − 2ab + b2) + (a2 − 2a + 1) + (b2 − 2b + 1) ≥ 0
\(\Leftrightarrow\) (a − b)2 + (a − 1)2 + (b − 1)2 ≥ 0
a)\(43^{2004}+43^{2005}\)
\(=43^{2004}+43^{2004}.43\)
\(=43^{2004}.\left(1+43\right)\)
\(=43^{2004}.44\)
\(=43^{2004}.4.11\)chia het cho 11
b)\(27^3+9^5\)
\(=3^9+3^{10}\)
\(=3^9\left(1+3\right)\)
\(=3^9.4\)chia het cho 4
a)
Ta có :
A = 432004 + 432005 = 432004 . ( 1 + 43 ) = 432004 . 44
Có : 44 \(⋮\)11
=> A chia hết cho 11
=> ĐPCM
b)
Ta có :
B = 273 + 95 = 39 + 310 = 39 . ( 1 + 3 ) = 39 . 4
Có :
4\(⋮\)4
=> B \(⋮\)4
=> ĐPCM
nha !!!
\(5^{100}+5^{98}=5^{98}\left(5^2+1\right)=5^{98}.26\)
Vì \(26⋮13\) nên \(5^{100}+5^{98}⋮13\)
Ta có :
(432004 + 432005) = 432004 x (1 + 43) = 432004 x 44
Vì 44 chia hết cho 11 nên 432004 x 44 chia hết cho 11 hay (432004 + 432005) chia hết cho 11 (ĐPCM)
Ủng hộ mk nha ^ ~ ^
b) Ta có:
273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 x (1 + 3) = 39 x 4
Vì 4 chia hết cho 4 nên 39 x 4 chia hết cho 4 hay (273 + 95) chia hết cho 4 (ĐPCM)
Xin lổi vì đã làm thiếu nhg nhớ ủng hộ mk nha cảm ơn nhìu !!!
1) a, Chứng minh a^5-a chia hết cho 5
b, Chứng minh a^7-a chia hết cho 7
\(5^{2005}+5^{2003}\)
\(=5^{2003}.\left(5^2+1\right)\)
\(=5^{2003}.26\)
\(=5^{2003}.2.13\)\(⋮\)\(13\)
5^2005 + 5^2003 = 5^2003 (5^2 +1)
= 5^2003 .26 chia hết cho 13