Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=5+52+53+54+...+52016
=(5+52+53)+(54+55+56)+...+(52014+52015+52016)
=5(1+5+52)+54(1+5+52)+...+52014(1+5+52)
=5.31+54.31+...+52014.31
=31(5+54+...+52014)
Vì 31\(⋮\)31 nên 31(5+54+...+52014)
Vậy S \(⋮\) 31
S = 5 + 5 ^ 2 + 5 ^ 3 + 5 ^ 4 + .... + 5 ^ 2016 ( co 2016 số hạng )
S = ( 5 + 5 ^ 2 + 5 ^ 3 ) + ( 5 ^ 4 + 5 ^ 5 + 5 ^ 6) + ..... + ( 5 ^ 2014 + 5 ^ 2015 + 5 ^ 2016 ) Co 2016 : 3 = 672 nhom
S = 5 x ( 1 + 5 + 5 ^ 2 ) + 5 ^ 4 x ( 1 + 5 + 5 ^ 2 ) +...... + 5 ^ 2014 x ( 1 + 5 + 5 ^ 2 )
S = 5 x 31 + 45 ^ 4 x 31 + ... + 5 ^ 2014 x 31
S = ( 5 + 5 ^ 4 + .... + 5 ^ 2014 ) x 31
VÌ 31 chia hết cho 31 nên ( 5 + 5 ^ 4 +.... + 5 ^ 2014 ) x 31 chia hết cho 31, hay B chia hết cho 31
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
Đặt A = \(5^1+5^2+5^3+...+5^{2016}\)
\(\Rightarrow A=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2015}+5^{2016}\right)\)
\(\Rightarrow A=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{2015}+\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{2015}.6\)
\(\Rightarrow A=6.\left(5+5^3+...+5^{2015}\right)\)
Vì \(6⋮6\Rightarrow A⋮6\)
\(\Rightarrow A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2014}+5^{2015}+5^{2016}\right)\)
\(\Rightarrow A=5.\left(1+5+5^2\right)+5^4+\left(1+5+5^2\right)+...+5^{2014}+\left(1+5+5^2\right)\)
\(\Rightarrow A=5.31+5^4.31+...+5^{2014}\)
\(\Rightarrow A=31.\left(5+5^4+...+5^{2014}\right)\)
Vì \(31⋮31\Rightarrow A⋮31\)
dễ như ăn cháo mà hỏi chi vậy , học thầy hướng dẫn chứ