Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
270 + 370 = (22)35 + (32)35 = 435 + 935 chia hết cho 4 + 9 = 13
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
A=(7100-3100)*(210+211+212)
A=[(74)25-(34)25]*(210+210.2+210.22)
A=(240125-8125)*210(1+2+22)
A=(.........1-.......1)*210.7
A=..........0*210.7
Vì A chia hết cho 10 và 7 nên A chia hết cho 70
Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)
Áp dụng ta đc :
a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)
b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)
Ta có: an+bn=(a+b)(an-1-an-2b+...+bn-1) nên an+bn chia hết cho a+b
Áp dụng vào bài toán ta có: 270+370=(22)35+(32)35=435+935 chia hết cho 4+9=13 (đpcm)
giúp mik nha m.n!!!