Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước nguyên tố của phân số là d (d là số tự nhiên)
Nhân tử với 3, mẫu với 2 thì ta có: 6n+3 chia hết cho d
6n+4 chia hết cho d
=> (6n+4)-(6n+3) chia hết cho d
Phá ngoặc thì 1 chia hết cho d=> d=1
=> (2n+1;3n+2)=1=> \(\frac{2n+1}{3n+2}\) là phân số tối giản với mọi giá trị n
Đặt \(d=\left(n+1,3n+2\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+1,4n+3\right)\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
Đặt \(d=\left(2n+3,3n+5\right)\).
Ta có: \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow2\left(3n+5\right)-3\left(2n+3\right)=1⋮d\).
Suy ra \(d=1\). Ta có đpcm.
Giải: Đặt: (2n^2 + 3n + 1 ; 3n + 2 ) = d
=> \(\hept{\begin{cases}2n^2+3n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n^2+3n+1\right)⋮d\\2n\left(3n+2\right)⋮d\end{cases}}\)
=> 3 ( 2n^2 + 3n + 1 ) - 2n ( 3n + 2 ) \(⋮\)d
=> 5n + 3 \(⋮\)d
=> ( 5n + 3 ) - ( 3n + 2 ) \(⋮\)d
=> 2n + 1 \(⋮\)d
=> (3n + 2 ) - (2n + 1) \(⋮\)d
=> n + 1 \(⋮\)d
=> ( 2n + 1 ) - ( n + 1) \(⋮\)d
=> n \(⋮\)d
=> ( n +1 ) - n \(⋮\)d
=> 1 \(⋮\)d => d = 1
=> ( 2n^2 + 3n + 1 ; 3n + 2 ) =1
=> ( 2n^2 + 3n + 1) / ( 3n + 2 ) là phân số tối giản với mọi số tự nhiên n.
Gọi d là ƯC ( 3n - 1 ; 2n - 1 )
⇒ 3n - 1 ⋮ d và 2n - 1 ⋮ d ⇒ 2.( 3n - 1 ) ⋮ d và 3.( 2n - 1 ) ⋮ d
⇒ [ 2.( 3n - 1 ) - 3.( 2n - 1 ) ] ⋮ d ⇒ [ ( 6n - 2 ) - ( 6n - 3 ) ] ⋮ d
⇒ 1 ⋮ d . Do đó : d = 1
Vì ƯC ( 3n - 1 ; 2n - 1 ) = 1 nên 3n - 1 ; 2n - 1 là nguyên tố cùng nhau
Vậy phân số 3n - 1 / 2n - 1 tối giản
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi ƯCLN(2n+3;3n+5)=d
Ta có:
2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=> 6n+10-6n-9 chia hết cho d
=> 1 chia hết cho d
mà d lớn nhất
=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)
Gọi d là ƯCLN(2n+1;3n+1)
\(\Rightarrow2n+1\) chia hết cho d
\(\Rightarrow3n+1\) chia hết cho d
\(\Rightarrow\left(2n+1\right)-\left(3n+1\right)\) chia hết cho d
\(\Rightarrow\left[3\left(2n+1\right)\right]-\left[2\left(3n+1\right)\right]\) chũng chia hết cho d
\(=\left[6n+3\right]-\left[6n+2\right]\)
\(=6n+3-6n-2\)
\(=\left(6n-6n\right)+\left(3-2\right)\)
\(=0+1=1\) chia hết cho d
Vậy 1 chia hết cho d nên => d chia hết cho 1;-1
=> ƯCLN(2n+1;3n+1)=1 (1)
từ \(\left(1\right)\Rightarrow\frac{2n+1}{3n+1}\) là phân số tối giản
ta có 2n/3n = 2/3
mà 2/3 + 1 = 5/3
5/3 là 1 phân số tối giản