K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

ta có 2n/3n = 2/3 

mà 2/3 + 1 = 5/3

5/3 là 1 phân số tối giản

8 tháng 5 2016

Gọi ước nguyên tố của phân số là d       (d là số tự nhiên)

Nhân tử với 3, mẫu với 2 thì ta có: 6n+3 chia hết cho d

                                                    6n+4 chia hết cho d

=> (6n+4)-(6n+3) chia hết cho d

Phá ngoặc thì 1 chia hết cho d=> d=1

=> (2n+1;3n+2)=1=> \(\frac{2n+1}{3n+2}\) là phân số tối giản với mọi giá trị n

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
9 tháng 3 2021

Đặt \(d=\left(2n+3,3n+5\right)\).

Ta có: \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}}\Rightarrow2\left(3n+5\right)-3\left(2n+3\right)=1⋮d\).

Suy ra \(d=1\). Ta có đpcm.

27 tháng 3 2020

Giải: Đặt: (2n^2 + 3n + 1 ; 3n + 2 ) = d

=> \(\hept{\begin{cases}2n^2+3n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n^2+3n+1\right)⋮d\\2n\left(3n+2\right)⋮d\end{cases}}\)

=> 3 ( 2n^2 + 3n + 1 ) - 2n ( 3n + 2 ) \(⋮\)d

=> 5n + 3 \(⋮\)

=> ( 5n + 3 ) - ( 3n + 2 ) \(⋮\)d

=> 2n + 1 \(⋮\)

=> (3n + 2 ) - (2n + 1) \(⋮\)d

=> n + 1 \(⋮\)d

=> ( 2n + 1 ) - ( n + 1) \(⋮\)d

=> n \(⋮\)

=> ( n +1 ) - n \(⋮\)d

=> 1 \(⋮\)d  => d = 1

=> ( 2n^2 + 3n + 1 ; 3n + 2 ) =1

=> ( 2n^2 + 3n + 1) / ( 3n + 2 ) là phân số tối giản với mọi số tự nhiên n. 

2 tháng 3 2016

Bạn Ơi sao giống tên tui vậy cả hình cũng giống nữa

2 tháng 3 2016

Gọi d là ƯC ( 3n - 1 ; 2n - 1 )

⇒ 3n - 1 ⋮ d và 2n - 1 ⋮ d ⇒ 2.( 3n - 1 ) ⋮ d và 3.( 2n - 1 ) ⋮ d  

⇒ [ 2.( 3n - 1 ) - 3.( 2n - 1 ) ] ⋮ d ⇒ [ ( 6n - 2 ) - ( 6n - 3 ) ] ⋮ d

⇒ 1 ⋮ d . Do đó : d = 1

Vì ƯC ( 3n - 1 ; 2n - 1 ) = 1 nên 3n - 1 ; 2n - 1 là nguyên tố cùng nhau

Vậy phân số 3n - 1 / 2n - 1 tối giản

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

3 tháng 2 2019

Gọi ƯCLN(2n+3;3n+5)=d

Ta có:

2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d

3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d

=>(6n+10)-(6n+9) chia hết cho d

=> 6n+10-6n-9 chia hết cho d

=> 1 chia hết cho d

 mà d lớn nhất 

=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)

3 tháng 2 2019

k cho mk nha!

19 tháng 4 2015

                   Gọi d là ƯCLN(2n+1;3n+1)

        \(\Rightarrow2n+1\) chia hết cho d

          \(\Rightarrow3n+1\) chia hết cho d

      \(\Rightarrow\left(2n+1\right)-\left(3n+1\right)\) chia hết cho d

      \(\Rightarrow\left[3\left(2n+1\right)\right]-\left[2\left(3n+1\right)\right]\) chũng chia hết cho d

           \(=\left[6n+3\right]-\left[6n+2\right]\)

          \(=6n+3-6n-2\)

          \(=\left(6n-6n\right)+\left(3-2\right)\)

          \(=0+1=1\) chia hết cho d

                 Vậy 1 chia hết cho d nên => d chia hết cho 1;-1

                       => ƯCLN(2n+1;3n+1)=1 (1)

                   từ  \(\left(1\right)\Rightarrow\frac{2n+1}{3n+1}\)  là phân số tối giản

18 tháng 4 2015

C/m phân số sau tối giản