Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Note: Em không chắc.Rất mong được mọi người góp ý ạ,em chưa biết cách dùng sos nên đành dùng cách khác ạ.
BĐT \(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)\ge a^{ 4}+b^4+c^4+ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)-ab\left(a^2+b^2\right)-bc\left(b^2+c^2\right)-ca\left(c^2+a^2\right)\ge0\) (*)
Dễ thấy BĐT trên là hệ quả của BĐT sau: \(a^4-ab\left(a^2+b^2\right)+b^4\ge0\) (1)
\(\Leftrightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)(2). Theo BĐT Cauchy-Schwarz dạng Engel,ta có:
\(VT=\frac{\left(a^2\right)^2}{1}+\frac{\left(b^2\right)^2}{1}\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\)
Ta luôn có \(\left(a-b\right)^2\ge0\forall a,b\inℝ\Rightarrow a^2+b^2\ge2ab\)
Suy ra: \(VT=a^4+b^4\ge\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)=VP\)
Do vậy BĐT (2) đúng suy ra BĐT (1) đúng (do 2 BĐT này tương đương nhau)
Tương tự với hai BĐT còn lại ta cũng có: \(b^4-bc\left(b^2+c^2\right)+c^4\ge0\);
\(c^4-ca\left(c^2+a^2\right)+a^4\ge0\). Cộng theo vế 3 BĐT trên suy ra (*) đúng hay ta có Q.E.D
\(2a^4+a+2b^4+b+2c^4+c\ge3\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)\ge3\left(a^3+b^3+c^3\right)-3\)
\(=2\left(a^3+b^3+c^3\right)+a^3+1+1+b^3+1+1+c^3+1+1-9\)
\(\ge2\left(a^3+b^3+c^3\right)+3\left(a+b+c\right)-9=2\left(a^3+b^3+c^3\right)\)
\(\Rightarrow a^4+b^4+c^4\ge a^3+b^3+c^3\)
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
Ta có: \(\left(a-1\right)^3=a^3-3a^2+3a-1\)
\(=a\left(a^2-3a+3\right)-1=a\left(a-\dfrac{3}{2}\right)^2+\dfrac{3}{4}a-1\ge\dfrac{3}{4}a-1\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\left(b-1\right)^3\ge\dfrac{3}{4}b-1;\left(c-1\right)^3\ge\dfrac{3}{4}c-1\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{3}{4}\left(a+b+c\right)-3=\dfrac{3}{4}\cdot3-3=-\dfrac{3}{4}\)
Áp dụng bunhiacopsky ta có
(a3 + b3 + c3)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))\(\ge\)(\(\frac{\sqrt{a^3}}{\sqrt{a}}+\frac{\sqrt{b^3}}{\sqrt{b}}+\frac{\sqrt{c^3}}{\sqrt{c}}\))2 = (a + b + c)2
- Xét hiệu: a4 + b4 - ab3 -a3b = a( a3 - b3) - b ( a3 - b3)
= (a-b)2 . ( a2 + ab + b2) ≥ 0 với mọi x ∈ R ( đpcm).
(a+b+c)(a3+b3+c3)
=a4+a3b+a3c+ab3+b4+b3c+ac3+bc3+c4
=a4+b4+c4+(a3b+ab3)+(bc3+b3c)+(c3a+ca3)
=a4+b4+c4+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
=(a4+b4+c4)+ab(a2+b2)+bc(b2+c2)+ca(c2+a2)
áp dụng bđt bunhia ta có:
\(\left(a^4+b^4\right)\left(1+1\right)\ge\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)
cmtt ta có:
\(b^4+c^4\ge bc\left(b^2+c^2\right);c^4+a^4\ge ca\left(c^2+a^2\right)\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(a+b+c\right)\le a^4+b^4+c^4+a^4+b^4+b^4+c^4+c^4+a^4=3\left(a^4+b^4+c^4\right)\)