Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\). Áp dụng tính chất tỉ dãy số bằng nhau. Ta có:
\(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Mặt khác: \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{\left(a-b\right)^{2015}}{\left(c-d\right)^{2015}}\ne\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)
Do vậy không thể chứng minh được đề bài. Suy ra: Đề sai!!!!
Do một số bạn phản ánh về lời giải của mình nên mình quyết định giải lại nhằm bảo vệ danh dự của mình =)))
Giải
Theo giả thiết, áp dụng tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số bằng nhau ,ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a-b}{c-d}\right)^{2015}\) (1)
Mặt khác, áp dụng tính chất dãy tỉ số bằng nhau lần nữa ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\) (2)
Từ (1) và (2) ta có: \(\hept{\begin{cases}\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\\\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}=\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}\end{cases}\Leftrightarrow\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}^{\left(đpcm\right)}}\)
a/b=c/d
=>a/c=b/d=a+b/c+d
=>(a/c)2015=(b/d)2015=(a+b/c+d)2015
=>a2015/c2015=b2015/d2015=(a+b/c+d)2015=a2015+b2015/c2015+d2015(dpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+n}{c+d}\Rightarrow\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\left(\frac{a+b}{c+d}\right)^{2015}\) (1)
Mặt khác,áp dụng t/c dãy tỉ số bằng nhau lần nữa,ta có: \(\frac{a^{2015}}{c^{2015}}=\frac{b^{2015}}{d^{2015}}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\) (2)
Từ (1) và (2) có: \(\left(\frac{a+b}{c+d}\right)^{2015}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\)
vì khi phá ngoặc ta sẽ đoi dấu (-)=>(+)
nên hai vế bằng nhau
chỉ cần giải thể là có điểm rùi bạn ơi
điểm tối đa nghe
cảm ơn mình bằng cách tích dựng nhà
vì a/b=c/d nên áp dung TC của dãy tỉ số bằng nhau có a/b=c/d=(a-b)/(c-d)
suy ra a2015/b2015=c2015/d2015=(a-b)2015/(c-d)2015 (1)
Áp dụng TC của dãy tỉ số bằng nhau lần nữa sẽ có :
a2015/b2015=c2015/d2015=(a2015+b2015)/(c2015+d2015) (2)
từ (1) và (2) suy ra dpcm
k cho mik nha
Đặt:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=k\Leftrightarrow\left\{{}\begin{matrix}a=2015k\\b=2016k\\c=2017k\end{matrix}\right.\)
Nên \(4\left(a-b\right)\left(b-c\right)=4\left(2015k-2016k\right)\left(2016k-2017k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)\(\left(c-a\right)^2=\left(2017k-2015k\right)^2=4k^2\)
Ta c dpcm
Đặt \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)= k
\(\Rightarrow\) a = 2015 . k
b = 2016 . k
c = 2017 . k
\(\Rightarrow\) 4( a - b ) . ( b - c) = 4( 2015.k - 2016.k) .( 2016.k - 2017.k )
= 4( -k) (-k) = 4k2 (1)
( c - a)2 =( 2017.k -2015.k)2= (2k)2= 4k2(2)
Từ (1) và ( 2) \(\Rightarrow\)4( a - b).( b - c ) = (c - a )2
1,
Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|\ge0\)
\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)
\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)
\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)
Dấu "=" xảy ra khi x = 0, y = 13
Vậy Pmin = 6/7 khi x = 0, y = 13
2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)
Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6
3,
Ta có: \(10\le n\le99\)
\(\Rightarrow20\le2n\le198\)
\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)
\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)
\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)
Ta thấy chỉ có 36 là số chính phương
Vậy n = 32
4,
ÁP dụng TCDTSBN ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)
Vậy B = 8