K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a = b = c = d

=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)

D = 1 + 1 + 1 + 1 = 4

18 tháng 11 2016

\(\frac{a}{2b}\)=\(\frac{b}{2c}\) =\(\frac{c}{2d}\) =\(\frac{d}{2a}\)=\(\frac{a+b+c+d}{2a+2b+2c+2d}\)=\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\)=\(\frac{1}{2}\)

quên rùi............................

đáp số =2

1 tháng 3 2018

đáp số = 2

7 tháng 3 2018

Ta có: \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)  (ĐK: a,b,c,d > 0)

Theo đề bài, suy ra: \(\frac{2b}{a}=\frac{2c}{b}=\frac{2d}{c}=\frac{2a}{d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow\frac{2011a-2010a}{2a}.4=\frac{a}{2a}.4=2\)  (Thay b, c ,d = a , Vì a = b =c =d)

25 tháng 10 2020

Vì a ; b ; c ; d  > 0

=> a + b +  c + d > 0

=> 2(a + b + c + d) > 0

=> 2a + 2b + 2c + 2d > 0

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

=> \(\frac{a}{2b}=\frac{1}{2}\Rightarrow2a=2b\Rightarrow a=b\)

Tương tự,ta được a = b = c = d

Khi đó A = \(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)

\(\frac{2013a-2012a}{2a}+\frac{2013b-2012b}{2b}+\frac{2013c-2012c}{2c}+\frac{2013d-2012d}{2d}\)(Vì a = b = c = d)

\(\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}+\frac{d}{2d}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

25 tháng 10 2020

\(a,b,c,d>0\text{ nên : }a+b+c+d>0\Rightarrow\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

do đó: a=b=c=d hay A=1/2+1/2+1/2+1/2=2