K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

A B C M N D

a, xét tam giác ABN và tam giác ACM có : 

góc A chung

AB = AC (gt)

AN = AM (gt)

=> tam giác ABN = tam giacd ACM (c-g-c)

=> BN = CM (đn)

b, có AB = AC (gt)  

AB = BM + MA 

AC = CN + NA 

AM = AN (gt)

=> BM = CN 

AB = AC (gt) => tam giác ABC cân tại A (đn) => góc ABC = góc ACB (tc)

xét tam giác BCM và tam giác CBN có : BC chung

=> tam giác BCM = tam giác CBN (c-g-c)

c, tam giác BCM = tam giác CBN (Câu b)

=> góc DBC = góc DCB (đn) mà góc DBC = 30

xét tam giác DBC có : góc DBC + góc DCB + góc BDC = 180 (đl) 

góc BDC = 180 - 30.2 = 120 

mà góc BDC = góc MDN (đối đỉnh)

=> góc MDN = 120 

28 tháng 10 2019

a) Xét ΔABN và ΔACM có:

AB=AC

^BAC: góc chung

AM=AN

=>ΔABN=Δacm(c.g.c) 

=>BN=CM(hai cạnh tương ứng )

b) Ta có:

AB=AC

AM=AN

=>MB=NC

Xét ΔBCM và ΔCBN có:

MB=NC

BC:cạnh chung 

BN=CM

=>ΔBCM=ΔCBN(c.c.c) 

c) Vì ^BDC và ^MDN là hai góc đối đỉnh 

=>^BDC=^MDN

=>^MDN=30°

22 tháng 10 2016

Giúp mk đi khocroi

7 tháng 10 2019

Luyện tập về ba trường hợp bằng nhau của tam giác

7 tháng 10 2019

Mơn bạn nhìu!!! vui

14 tháng 5 2020

Chương II : Tam giác

a, Xét \(\Delta ABM\)\(\Delta ACM\) có:

\(BM=CM\left(M-là-tr.điểm-BC\right)\)

\(\widehat{B_1}=\widehat{C_1}\left(\Delta ABC-cân-tại-A\right)\)

\(AB=AC\left(\Delta ABC-cân-tại-A\right)\)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\left(đpcm_1\right)\)

b, Xét \(\Delta ABC\) có:

\(D-là-tr.điểm-của-AB\)

\(E-là-tr.điểm-của-AC\)

\(\Rightarrow DE//BC\)

Mà: \(\widehat{AMB}=\widehat{AMC}=\frac{180^0}{2}=90^0\)

\(\Rightarrow AM\perp BC\)

Từ trên ta có: \(\left\{{}\begin{matrix}AM\perp BC\\DE//BC\end{matrix}\right.\Rightarrow DE\perp AM\left(đpcm_2\right)\)