K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2020

đây là bài làm của mình:

A=2^1+2^2+2^3+...+2^2004

A=(2^1+2^2)+(2^3)+...+(2^2003=2^2004)

A=2.(1+2)+2^3.(1+2)+...+2^2003.(1+2)

A=2.3+2^3.3+...+2^2003.3

A=3.(2+2^3+2^5+...+2^2003) chia hết cho 3

cho 7 nhóm 3 số hạng vào với nhau còn cho 15 thì nhóm 4 số hạng vào với nhau tương tự như chứng minh chia hêt cho 3 nha

hứa cho mik r đó (UwU)

19 tháng 12 2015

S=(1+2)+(22+23)+.....+(26+27)

S=   3   +22(1+2)+....+26(1+2)

S=   3   +22.3+.....+26.3

S=   3(1+22+.....+26)chia hết cho 3

Tick mình đầu tiên nha

7 tháng 12 2018

có ai ko

7 tháng 12 2018

ta có A= (2+2^2)+(2^3+2^4)+...+(2^2003+2^2004) 

=2.3+2^3.3+2^5.3+...+2^2003.3

=3(2+2^3+2^5+...+2^2003) chia hết cho 3

ta có A= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2002+2^2003+2^2004)

= 2.7+2^4.7+...+2^2002.7 =7(2+2^4+2^2002) chia hết cho 7

bạn chứng minh tương tự ghép cặp 2+2^3; 2^2+2^4;...; 2^2002+2^2004 thì ta đc A chia hết cho 5 

mà (3;5)=1 suy ra A chia hết cho 15

22 tháng 3 2017

1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số

Gọi số phải tìm là A

Ta có A + 4 chia hết cho 5 , 7 , 9

Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315

Do đó A = 315 - 4 = 311

2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100

S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )

S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )

S = 1.30 +...+2^96.30

S = ( 1 +...+2^96 )30

Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15

Hay S chia hết cho 15

b) Vì S cha hết cho 30 nên S chia hết cho 10

Suy ra S có tận cùng là 0

c) S = 2^1 + 2^2 + 2^3 +...+2^100

2S = 2^2 + 2^3 + 2^4 +...+ 2^101

2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )

S = 2^101 - 2^1

S = 2^101 - 2

22 tháng 3 2017

1. 158

2a. 0 ( doan nha )

b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )

      = 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)

      = 2.15+2^5.15+...+2^97.15

      = 15.(2+2^5+...+2^97) chia het 15

c.2^101-2^1

3. chiu !

31 tháng 12 2015

a)S=3^0+3^2+3^4+...+3^2000+3^2002

=>3^2S=3^2(3^0+3^2+3^4+...+3^2000+3^2002)

=>9S=3^2+3^4+3^6+...+3^2002+3^2004

=>9S-S=(3^2+3^4+3^6+...+3^2004)-(3^0+3^2+3^4+...+3^2000+3^2002)

=>8S=3^2004-3^0=3^2004-1

=>S=(3^2004-1)/8

b) S=3^0+3^2+3^4+...+3^2000+3^2004

=>S=(3^0+3^2+3^4)+(3^6+3^8+3^10)+...+(3^1998+3^2000+3^2002)

=>S=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^1998(1+3^2+3^4)

=>S=91+3^6.91+...+3^1998.91

=>S=91(1+3^6+...+3^1998)

=>S=7.13.(1+3^6+...+3^1998

=>S chia hết cho 7 

31 tháng 12 2015

b)Ta có:S=(30+32+34)+...(31996+31998+32000+32002)

           S=91+...+31996.(1+32+34)

          S=91+...+31996.91

          S=91.(1+...+31996)

Vì 91chia hết cho 7 nên S chia hết cho 7

25 tháng 7 2017

1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10

A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)

A= 3.( 2^1+2^3+2^5+...+2^1005)

Do 3 \(⋮\)3 => A\(⋮\)3

Ta có: A =.....

A= Ghép 3 số lại

A= 7. (2^1+ 2^4+...+2^670)

Do 7 \(⋮\)7 => A \(⋮\)7

2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi

Duyệt nhanh....

11 tháng 12 2017

Câu b, chuyển 3^2010 thành 2^2010 nhé!

31 tháng 1 2016

a) ( 3n + 2 ) chia hết cho n - 1

​Ta có : 3n + 2 = 3n - 1 + 3

​Vì 3n - 1 chia hết cho n - 1

=> 3 chia hết cho n - 1

​=> n - 1 thuộc Ư( 3 )

​Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }

​=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }

​Vậy n thuộc { 2 ; 0 ; 4 ; -2 }

b ) ( 3n + 24 ) chia hết cho n - 4

​Ta có : 3n + 24 = 3n - 4 + 28

​Vì 3n - 4 chia hết cho n - 4

=> 28 chia hết cho n - 4

​Xong bạn làm tương tự như câu a nha