Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(1+2)+(22+23)+.....+(26+27)
S= 3 +22(1+2)+....+26(1+2)
S= 3 +22.3+.....+26.3
S= 3(1+22+.....+26)chia hết cho 3
Tick mình đầu tiên nha
ta có A= (2+2^2)+(2^3+2^4)+...+(2^2003+2^2004)
=2.3+2^3.3+2^5.3+...+2^2003.3
=3(2+2^3+2^5+...+2^2003) chia hết cho 3
ta có A= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2002+2^2003+2^2004)
= 2.7+2^4.7+...+2^2002.7 =7(2+2^4+2^2002) chia hết cho 7
bạn chứng minh tương tự ghép cặp 2+2^3; 2^2+2^4;...; 2^2002+2^2004 thì ta đc A chia hết cho 5
mà (3;5)=1 suy ra A chia hết cho 15
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
a)S=3^0+3^2+3^4+...+3^2000+3^2002
=>3^2S=3^2(3^0+3^2+3^4+...+3^2000+3^2002)
=>9S=3^2+3^4+3^6+...+3^2002+3^2004
=>9S-S=(3^2+3^4+3^6+...+3^2004)-(3^0+3^2+3^4+...+3^2000+3^2002)
=>8S=3^2004-3^0=3^2004-1
=>S=(3^2004-1)/8
b) S=3^0+3^2+3^4+...+3^2000+3^2004
=>S=(3^0+3^2+3^4)+(3^6+3^8+3^10)+...+(3^1998+3^2000+3^2002)
=>S=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^1998(1+3^2+3^4)
=>S=91+3^6.91+...+3^1998.91
=>S=91(1+3^6+...+3^1998)
=>S=7.13.(1+3^6+...+3^1998
=>S chia hết cho 7
b)Ta có:S=(30+32+34)+...(31996+31998+32000+32002)
S=91+...+31996.(1+32+34)
S=91+...+31996.91
S=91.(1+...+31996)
Vì 91chia hết cho 7 nên S chia hết cho 7
1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10
A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)
A= 3.( 2^1+2^3+2^5+...+2^1005)
Do 3 \(⋮\)3 => A\(⋮\)3
Ta có: A =.....
A= Ghép 3 số lại
A= 7. (2^1+ 2^4+...+2^670)
Do 7 \(⋮\)7 => A \(⋮\)7
2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi
Duyệt nhanh....
a) ( 3n + 2 ) chia hết cho n - 1
Ta có : 3n + 2 = 3n - 1 + 3
Vì 3n - 1 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư( 3 )
Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }
=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }
Vậy n thuộc { 2 ; 0 ; 4 ; -2 }
b ) ( 3n + 24 ) chia hết cho n - 4
Ta có : 3n + 24 = 3n - 4 + 28
Vì 3n - 4 chia hết cho n - 4
=> 28 chia hết cho n - 4
Xong bạn làm tương tự như câu a nha
đây là bài làm của mình:
A=2^1+2^2+2^3+...+2^2004
A=(2^1+2^2)+(2^3)+...+(2^2003=2^2004)
A=2.(1+2)+2^3.(1+2)+...+2^2003.(1+2)
A=2.3+2^3.3+...+2^2003.3
A=3.(2+2^3+2^5+...+2^2003) chia hết cho 3
cho 7 nhóm 3 số hạng vào với nhau còn cho 15 thì nhóm 4 số hạng vào với nhau tương tự như chứng minh chia hêt cho 3 nha
hứa cho mik r đó (UwU)