K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(4^2-2\left(m-1\right)=30\)

\(2m-2=-14\)

\(m=-6\)

DD
10 tháng 5 2022

Để phương trình đã cho có hai nghiệm \(x_1,x_2\) thì 

\(\Delta'>0\Leftrightarrow2^2-\left(m-1\right)=5-m>0\Leftrightarrow m< 5\)

Khi \(m< 5\) phương trình đã cho có hai nghiệm \(x_1,x_2\).

Theo định lí Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

Ta có: 

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(m-1\right)=18-2m=30\)

\(\Leftrightarrow m=-6\) (thỏa mãn) 

10 tháng 5 2022

Áp dụng hệ thức vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=m-1\end{matrix}\right.\)

Ta có:

\(x_1^2+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=30\)

\(\Leftrightarrow4^2-2\left(m-1\right)=30\)

\(\Leftrightarrow2m-2=-14\)

\(\Leftrightarrow m=-6\)

9 tháng 3 2019

x 2  - 3x + m - 5 = 0

a = 1; b = -3; c = m – 5

Δ = b 2 - 4ac = - 3 2 - 4(m - 5) = 29 - 4m

Phương trình có 2 nghiệm phân biệt x 1 ; x 2  khi và chỉ khi

Δ > 0 ⇔ 29 - 4m > 0 ⇔ m < 29/4

Theo định lí Vi-et ta có:

x 1 ; x 2  = c/a = m - 5

Theo bài ra

x 1 ; x 2 = 4 ⇔ m - 5 = 4 ⇔ m = 9 (Không TMĐK m < 29/4)

Vậy không tồn tại m thỏa mãn đề bài.

28 tháng 1 2016

1) thay m=1 vào pt: \(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

2) theo định lí viets, ta có: x1+x2=2(m+1)

                                          x1x2=2m

\(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=2\)

\(\Leftrightarrow2\left(m+1\right)+2\sqrt{2m}=2\)

tới đây bạn làm tiếp nhé

10 tháng 3 2021

Ta có \(\Delta'=m^2-(m-3)=m^2-m+3>0\) nên pt luôn có 2 nghiệm phân biệt

Ta có \(\left|x_1\right|=\left|x_2\right|\Leftrightarrow\left[{}\begin{matrix}x_1=x_2\left(loại\right)\\x_1+x_2=0\end{matrix}\right.\).

Do đó \(x_1+x_2=0\Leftrightarrow\dfrac{2m}{1}=0\Leftrightarrow m=0\).

Vậy m = 0.

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

Δ=5^2-4(m-3)

=25-4m+12=-4m+27

Để phương trình có 2 nghiệm thì -4m+27>=0

=>m<=27/4

Theo đề, ta có: x1-2<0 và x2-2>0

=>(x1-2)(x2-2)<0

=>x1x2-2(x1+x2)+4<0

=>m-3-2*(-5)+4<0

=>m+1+10<0

=>m<-11