\(\Delta ABC\) vuông tại A .Kẻ đường thẳng đi qua A sao cho hai điểm B v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Câu a và hình vẽ bạn vào link này nhé:

https://hoc24.vn/hoi-dap/question/173974.html

b) Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H có:

\(AB^2=AH^2+BH^2\)

\(AH=CK\) (\(\Delta BHA=\Delta AKC\) ở câu a)

\(\Rightarrow AB^2=CK^2+BH^2\)

Vậy \(BH^2+CK^2\) có giá trị không đổi.

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

Sửa đề; AE là phân giác

a: Xét ΔABE và ΔADE có 

AB=AD
\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Suy ra: BE=DE

b: Xét ΔEBK và ΔEDC có 

\(\widehat{BEK}=\widehat{DEC}\)

EB=ED

\(\widehat{EBK}=\widehat{EDC}\)

Do đó: ΔEBK=ΔEDC

c: ta có: AB=AD

EB=ED

DO đó:AE là đường trung trực của BD

Ta có: ΔAKC cân tại A

mà AE là đường phân giác

nên AE là đường trung trực của CK

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

hay a/b=5/6

12 tháng 3 2017

thiếu đề

30 tháng 10 2017

Từ a/b=c/d⇒a/c=b/d

Áp dụng tính chất dãy tỉ số bằng nhau

a/c=b/d=a+b/c+d

⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)

Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)

Từ (1) và (2)

⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3