Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D 1 2
Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)
Giải:
a, ΔABD = ΔACD:
Xét ΔABM và ΔACM có:
+ AB = AC (ΔABC cân tại A)
+ AM là cạnh chung.
+ BM = CM (trung tuyến AM)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
Xét ΔABD và ΔACD có:
+ AB = AC (ΔABC cân tại A)
+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)
+ AD là cạnh chung.
=> ΔABD = ΔACD (c - g - c)
b, ΔBDC cân:
Ta có: ΔABD = ΔACD (câu a)
=> BD = CD (2 cạnh tương ứng)
=> ΔBDC cân tại D.
A B C D M
a) ΔABD=ΔACD
Xét ΔABM và ΔACM ta có:
AB=AC (ΔABC cân tại A)
AM chung
BM=BC (gt)
\(\Rightarrow\)ΔABM = ΔACM (c.c.c)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
Xét ΔABD và ΔACD ta có:
AB=AC (ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (cmt)
AM cạnh chung
\(\Rightarrow\) ΔABD = ΔACD (c.g.c)
b) ΔBDC cân
Vì ΔABD = ΔACD ( theo câu a)
\(\Rightarrow\)BD=DC (2 cạnh tương ứng)
\(\Rightarrow\)ΔBDC cân tại D (đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).
Sửa đề; AE là phân giác
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Xét ΔEBK và ΔEDC có
\(\widehat{BEK}=\widehat{DEC}\)
EB=ED
\(\widehat{EBK}=\widehat{EDC}\)
Do đó: ΔEBK=ΔEDC
c: ta có: AB=AD
EB=ED
DO đó:AE là đường trung trực của BD
Ta có: ΔAKC cân tại A
mà AE là đường phân giác
nên AE là đường trung trực của CK
\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
hay a/b=5/6
Từ a/b=c/d⇒a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau
a/c=b/d=a+b/c+d
⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)
Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)
Từ (1) và (2)
⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3
Câu a và hình vẽ bạn vào link này nhé:
https://hoc24.vn/hoi-dap/question/173974.html
b) Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H có:
\(AB^2=AH^2+BH^2\)
mà \(AH=CK\) (\(\Delta BHA=\Delta AKC\) ở câu a)
\(\Rightarrow AB^2=CK^2+BH^2\)
Vậy \(BH^2+CK^2\) có giá trị không đổi.