Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(c+a\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)
\(=\sqrt{\frac{a}{a+b}.\frac{a}{c+a}}+\sqrt{\frac{b}{a+b}.\frac{b}{b+c}}+\sqrt{\frac{c}{b+c}.\frac{c}{c+a}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}\right)\)
\(=\frac{1}{2}.3=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Bạn tham khảo:
Câu hỏi của Nguyễn Bảo Trân - Toán lớp 9 | Học trực tuyến
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^2}{b}=\frac{a^2-ab+b^2}{b}+a-b=\frac{a^2-ab+b^2}{b}+b+(a-2b)\geq 2\sqrt{a^2-ab+b^2}+(a-2b)\)
Tương tự:
\(\frac{b^2}{c}\geq 2\sqrt{b^2-bc+c^2}+(b-2c)\)
\(\frac{c^2}{a}\geq 2\sqrt{c^2-ca+a^2}+(c-2a)\)
Cộng theo vế:
\(\sum \frac{a^2}{b}\geq 2\sum \sqrt{a^2-ab+b^2}-(a+b+c)(1)\)
Mà theo BĐT AM-GM:
\(\sqrt{a^2-ab+b^2}=\sqrt{(a+b)^2-3ab}\geq \sqrt{(a+b)^2-\frac{3}{4}(a+b)^2}=\frac{a+b}{2}\)
\(\Rightarrow \sum \sqrt{a^2-ab+b^2}\geq \sum \frac{a+b}{2}=a+b+c(2)\)
Từ $(1);(2)\Rightarrow \sum \frac{a^2}{b}\geq \sum \sqrt{a^2-ab+b^2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\ge\frac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\ge\frac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự: \(\sqrt{\frac{bc+2a^2}{1+bc-a^2}}\ge bc+2a^2\) ; \(\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge ca+2b^2\)
Cộng vế với vế:
\(VT\ge2\left(a^2+b^2+c^2\right)+ab+bc+ca=2+ab+bc+ca\)
Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)
Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)
Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)
\(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)
\(P\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}=\frac{1}{1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\ge\frac{1}{1+\left(a+b+c\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)