Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét phương trình hoành độ giao điểm giữa (d2) và (d3) ta có:
\(-2x=9-5x\)\(\Leftrightarrow x=3\)
thay vào (d2) ta có: y=-6
=>điểm (3;-6) là giao điểm của (d2) và (d3)
để 3 đường thẳng đồng quy thì:
(3;-6) thuộc (d3)
=> -6=(m+1)3-2m-5
<=> -6=m-2
<=>m=-4
vậy m=-4 thì 3 đường thẳng đồng quy
Gọi A là giao điểm d1 và d2
Pt hoành độ giao điểm d1 và d2: \(x+3=-x+1\Rightarrow x=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d3 qua A
\(\Leftrightarrow2=\sqrt{2}.\left(-1\right)+\sqrt{2}+m\)
\(\Rightarrow m=2\)
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
\(2x^2-mx-2m=0\)
a/ \(\Delta=m^2+16m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-16\end{matrix}\right.\)
b/ Gọi \(d_1:\) \(y=4x+b\)
\(A\left(a;a+7\right)\Rightarrow a+7=2a+4\Rightarrow a=3\Rightarrow A\left(3;10\right)\)
\(\Rightarrow10=4.3+b\Rightarrow b=-2\Rightarrow d_1:\) \(y=4x-2\)
\(\left\{{}\begin{matrix}y=mx+2m\\y=4x-2\end{matrix}\right.\)
- Nếu \(\Rightarrow\left(m-4\right)x+2m+2=0\Rightarrow x=\frac{-2m-2}{m-4}\Rightarrow y=\frac{-10m}{m-4}\)
Tự thay 2 giá trị m ở câu a vào để tính ra tọa độ cụ thể
c/ Với\(k\ne2l\ne4\Rightarrow\left\{{}\begin{matrix}k\ne4\\l\ne2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=kx+2k+1\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-2k-3}{k-4}\\y=\frac{-10k-4}{k-4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y=2lx+l-2\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-l}{2l-4}\\y=\frac{-4l+4}{l-2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{-2k-3}{k-4}=\frac{-l}{2l-4}\\\frac{-10k-4}{k-4}=\frac{-4l+4}{l-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=...\\l=...\end{matrix}\right.\)
a:
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}3x-2=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-x=2+1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=3\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{2}+1=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=3/2 và y=5/2 vào (d3), ta được:
\(2m+3\cdot\dfrac{3}{2}-1=\dfrac{5}{2}\)
=>\(2m+\dfrac{7}{2}=\dfrac{5}{2}\)
=>\(2m=-1\)
=>m=-1/2
c: (d3): y=2m+3x-1
=>y=m*2+3x-1
Tọa độ điểm mà (d3) luôn đi qua là:
\(\left\{{}\begin{matrix}2=0\left(vôlý\right)\\y=3x-1\end{matrix}\right.\)
=>(d3) không đi qua cố định bất cứ điểm nào
d1 và d2 đồng quy khi hệ phương trình có nghiệm:
\(\left\{{}\begin{matrix}5x+11y=8\\10x-7y=74\end{matrix}\right.\)
x=6 và y=-2
Thế vào d3: 4m.6-2(2m-1)=m+2
20m+2=m+2
19m=0 suy ra m=0
m=0 thì 3 đường thẳng đồng quy
b: Để hai đường song song thì m^2-1=1 và -m^2+3=5
=>m^2=2 và -m^2=2
=>\(m=\pm\sqrt{2}\)
c: Vì (d2) vuông góc với (d3)
và (d1)//(d2)
nên (d1) vuông góc với (d3)
Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay x=1 và y=2 vào (d1), ta được:
\(\left(m^2-1\right)+m^2-5=2\)
=>\(2m^2=8\)
=>\(m^2=4\)
=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)
\(y=\left(m+1\right)x-2m-5\left(d_1\right)\)
\(y=-2x\left(d_2\right)\)
\(y=9-5x\left(d_3\right)\)
Hoành độ giao điểm của \(\left(d_2\right),\left(d_3\right)\)là nghiệm của phương trình.
\(-2x=9-5x\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Thay \(x=3\)vào \(\left(d_2\right)\)ta được: \(y=-6\)
\(\Rightarrow A\left(3;-6\right)\)là giao điểm của \(\left(d_2\right),\left(d_3\right)\)
Để \(\left(d_1\right),\left(d_2\right),\left(d_3\right)\)đồng quy thì:
\(\Leftrightarrow\left(d_1\right)\)di qua \(A\left(3;-6\right)\)
\(\Leftrightarrow-6=\left(m+1\right).3-2m-5\)
\(\Leftrightarrow3m+3-2m-5+6=0\)
\(\Leftrightarrow m+4=0\)
\(\Leftrightarrow m=-4\)
Vậy ............