K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt \(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=k\Rightarrow x=7k;y=8k;z=9k\)

=>A=\(\left(7k-8k\right)\left(8k-9k\right)-\left(\frac{7k-9k}{2}\right)^2=\left(-k\right)\left(-k\right)-\left(\frac{2k}{2}\right)^2\)

=k2-k2=0

7 tháng 7 2017

Đặt \(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=k\)

\(\Rightarrow\hept{\begin{cases}x=7k\\y=8k\\z=9k\end{cases}}\left(1\right)\)

Thay (1) vào: \(A=\left(7k-8k\right)\left(8k-9k\right)-\left(\frac{7k-9k}{2}\right)^2\)

\(=-k.\left(-k\right)-\left(-k\right)^2\)

\(=k^2-k^2=0\)

Vậy A =0 .

14 tháng 8 2016

Ta có

\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)

Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)

\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)

9 tháng 8 2017

toán lớp 7 đấy mình ấn lộn

18 tháng 3 2017

Ta có :  \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)

18 tháng 3 2017

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)

Vậy ...

27 tháng 12 2016

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

=>\(B=\frac{\left(a^2x+b^2y+c^2z\right)^3}{x^3+y^3+z^3}=\frac{\left(a^2ak+b^2bk+c^2ck\right)^3}{\left(ak\right)^3+\left(bk\right)^3+\left(ck\right)^3}=\frac{\left(a^3k+b^3k+c^3k\right)^3}{a^3k^3+b^3k^3+c^3k^3}\)

\(=\frac{k^3\left(a^3+b^3+c^3\right)^3}{k^3\left(a^3+b^3+c^3\right)}=\left(a^3+b^3+c^3\right)^2\)

28 tháng 12 2016

cảm ơn trà my nhiều

bài nè ko phải gửi đi lấy điểm đâu các bn.

12 tháng 7 2016

có: \(\hept{\begin{cases}\left(x-y-z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\Rightarrow\left(x-y-z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
                                           \(\Leftrightarrow\hept{\begin{cases}\left(x-y-z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\y-2=0\\z+3=0\end{cases}}\)
                                            \(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=2\\z=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)