K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

AP DUNG BDT CAUCHY-SCHWAR :  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))

3 tháng 2 2019

...Cauchy-Schwarz: 

\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)

Giải tiếp t cái dấu = :v

27 tháng 2 2020

\(B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+y}\)

Áp dụng BĐT cô si:

\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)

CMTT: \(\frac{y^2}{y+z}+\frac{y+z}{4}\ge y\)

         \(\frac{z^2}{x+z}+\frac{x+z}{4}\ge z\)

Cộng vế với vế ta được:

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}+\frac{x+y}{4}+\frac{y+z}{4}+\frac{x+z}{4}\ge x+y+z\)

\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge4-\frac{2.\left(x+y+z\right)}{4}=4-2=2\)

           \(B\ge2\)

Dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{4}{3}\)

27 tháng 2 2020

sờ vác xơ

\(B=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(=2\)

Dấu "=" xảy ra tại \(x=y=z=\frac{4}{3}\)

19 tháng 10 2017

áp dụng bdt cauchy -schửat dạng engel ta có 

\(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)\(\ge\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}=\frac{1}{2}\)

(do \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) bn tự cm nhé)

dau = xay ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

22 tháng 5 2017

áp dụng BĐT Cauchy ta có

\(\frac{x^3}{y+2z}+\frac{y+2z}{9}+\frac{1}{3}>=3\sqrt[3]{\frac{x^3}{y+2z}.\frac{\left(y+2z\right)}{9}.\frac{1}{3}}=x\)

\(=>\frac{x^3}{y+2z}>=x-\frac{y+2z}{9}-\frac{1}{3}\)

Tương tự \(\frac{y^3}{z+2x}>=y-\frac{z+2x}{9}-\frac{1}{3}\),\(\frac{z^3}{x+2y}>=z-\frac{x+2y}{9}-\frac{1}{3}\)

\(=>P>=\left(x+y+z\right)-\frac{3\left(x+y+z\right)}{9}-\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\)

Mà x+y+z=3

\(=>P>=3-1-1=1\)

=>Min P=1 

Dấu "=" xảy ra khi x=y=z=1

22 tháng 5 2017

bạn đăng bđt đi CTV,,,,mik lm vs

\(A=\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(x+z\right)\sqrt{\left(x+y\right)\left(y+z\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}}{z}.\)

Áp dụng bất đẳng thức Bunhiacopski ta có

\(\left(x+y\right)\left(x+z\right)\ge\left(x+\sqrt{yz}\right)^2\)

Tương tự \(\left(x+y\right)\left(y+z\right)\ge\left(y+\sqrt{xz}\right)^2\)

                 \(\left(y+z\right)\left(x+z\right)\ge\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow A\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}+\frac{\left(x+z\right)\left(y+\sqrt{xz}\right)}{y}+\frac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\)

hay \(A\ge2\left(x+y+z\right)+\frac{\sqrt{yz}\left(y+z\right)}{x}+\frac{\left(x+z\right)\sqrt{xz}}{y}+\frac{\left(x+y\right)\sqrt{xy}}{z}\)

\(\Leftrightarrow A\ge2\left(x+y+z\right)+\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)

Đặt \(M=\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)

Ta có \(\left(x,y,z\right)\rightarrow\left(a^2,b^2,c^2\right)\)

Khi đó \(M=\frac{a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)}{a^2b^2c^2}\)

ÁP DỤNG BĐT AM-GM ta có

\(a^5b^3+a^3b^5\ge2\sqrt{a^8b^8}=2a^4b^4\)

\(b^5c^3+b^3c^5\ge2\sqrt{b^8c^8}=2b^4c^4\)

\(a^5c^3+a^3c^5\ge2\sqrt{a^8c^8}=2a^4c^4\)

Cộng từng vế ta được 

\(a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)\ge2\left(a^4b^4+b^4c^4+c^4a^4\right)\)

              \(\ge2a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow M\ge2\left(a^2+b^2+c^2\right)=2\left(x+y+z\right)\)

\(\Rightarrow A\ge4\left(x+y+z\right)=4\sqrt{2019}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2019}}{3}\)

\(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\rightarrow\left(a,b,c\right)\)

\(\Rightarrow ab+bc+ca=3\)

Áp dụng bđt Cauchy-Schwarz ta có

\(P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

Dấu "=" xảy ra khi a=b=c=1 => x=y=z=1

8 tháng 9 2018

TA CÓ:

\(P=\frac{4x}{4\sqrt{y+z-4}}+\frac{4y}{4\sqrt{z+x-4}}+\frac{4z}{4\sqrt{x+z-4}}\)

ÁP DỤNG HẰNG ĐẲNG THỨC:

a2+4\(\ge\)4a

\(\Rightarrow P\ge\frac{4x}{y+z-4+4}+\frac{4y}{z+x-4+4}+\frac{4z}{4+z+x-4}=4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI x=y=z=4

8 tháng 9 2018

NẾU AI CHƯA HIỂU ĐOẠN 

\(4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)

THÌ LÀM THẾ NÀY NHÉ:
TA CÓ:

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{x\left(y+z\right)}+\frac{y^2}{y\left(z+x\right)}+\frac{z^2}{z\left(x+y\right)}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{2.\frac{\left(x+y+z\right)^2}{3}}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)\(\Rightarrow4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge\frac{4.3}{2}=6\)