K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Đặt: \(VT=\frac{x^2}{y+2}+\frac{y^2}{z+2}+\frac{z^2}{x+2}\)

Theo BĐT Cauchy, ta có:

\(\frac{x^2}{y+2}+\frac{1}{9}\left(y+2\right)\ge\frac{2}{3}x\) và \(\frac{y^2}{z+2}+\frac{1}{9}\left(z+2\right)\ge\frac{2}{3}y\)và \(\frac{z^2}{x+2}+\frac{1}{9}\left(x+2\right)\ge\frac{2}{3}z\)

Cộng vế theo vế, ta có:

\(VT\ge\frac{2}{3}\left(x+y+z\right)-\frac{1}{9}\left(x+y+z+6\right)\)

\(\Leftrightarrow VT\ge\frac{5}{9}\left(x+y+z\right)-\frac{2}{3}\)            ( 1 )

Theo BĐT Cauchy, ta chứng minh được: 

\(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow3xyz\ge xy+yz+zx\Leftrightarrow3\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Leftrightarrow\frac{1}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{1}{3}\)

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Leftrightarrow\left(x+y+z\right)\ge\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\ge\frac{9}{3}=3\)                ( 2 )

Từ (1) và (2) \(\Leftrightarrow VT\ge\frac{5}{9}.3-\frac{2}{3}=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)( thỏa đề bài )

12 tháng 9 2018

đề sai bạn ơi, nhỡ may x=y=z=0 thì sao

12 tháng 9 2018

ừ nhỉ phải là x3+y3+z3=1 bạn ạ

22 tháng 5 2019

Áp dụng BĐT Cô-si,ta có :

x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\)\(y^4+xz\ge2y^2\sqrt{xz}\)\(z^4+xy\ge2z^2\sqrt{xy}\)

\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

31 tháng 5 2020

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)

\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1

28 tháng 5 2019

\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)

\(=3+\frac{x^3+y^3+z^3}{2xyz}\)

\(\Rightarrow\)\(A\le3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\sqrt{\frac{2}{3}}\)

26 tháng 2 2018

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1

ta có:

\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)

\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)

\(\Rightarrow F\ge\sqrt{3}\)

Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)

18 tháng 7 2017

cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv