Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{4+4\sqrt{1+x^2}}{4x}\le\frac{4+5+x^2}{4x}=\)\(\frac{x^2+9}{4x}\)Tương tự ta đc P\(\le\frac{x+y+z}{4}+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{xy+yz+zx}{xyz}\right)\)\(\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\cdot\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)}\)\(=x+y+z\)
Dấu '='xảy ra <=>\(\hept{\begin{cases}x+y+z=xyz\\x=y=z\end{cases}\Rightarrow x=y=z=}\)\(\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cauchy , ta có :
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)
\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)
\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)
\(\sqrt{x}+\sqrt{y}=\sqrt{z}\Rightarrow x+y+2\sqrt{xy}=z\Rightarrow x+y-z=-2\sqrt{xy}\)
\(\sqrt{x}-\sqrt{z}=\sqrt{y}\Rightarrow x+z-2\sqrt{xz}=y\Rightarrow z+x-y=2\sqrt{xz}\)
Tương tự:\(y+z-x=2\sqrt{yz}\)
\(A=\frac{1}{-2\sqrt{xy}}+\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{zx}}=\frac{1}{2}\left(\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}\right)=0\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)
\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)
Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)
Hoàn toàn tương tự:
\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)
Cộng theo vế các BĐT đã thu được ta có:
\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=3\)
\(\dfrac{\sqrt{1\left(x-1\right)}}{x}\le\dfrac{1+x-1}{2x}=\dfrac{1}{2}\) ( cauchy )
TT,\(\dfrac{\sqrt{y-2}}{y}\le\dfrac{1}{2\sqrt{2}};\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\)
cộng vế theo vế => đpcm
Thì biết pass facebook thôi chứ cũng không biết có hack không
Bạn ấy đăng nhập bằng FACEBOOK mà
Đặt \(\left(\dfrac{1}{\sqrt{x}};\dfrac{1}{\sqrt{y}};\dfrac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}=1\)
Ta cần chứng minh: \(ab+bc+ca\le\dfrac{3}{2}\)
Thật vậy, ta có:
\(1=\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
\(\Rightarrow a^2+b^2+c^2+3\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le\dfrac{3}{2}\) (đpcm)