Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bđt Cauchy-schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
\(\Rightarrow P\ge3\)
Dấu = khi x=y=z=1
\(P+3=\frac{x^3}{y^2}+x+\frac{y^3}{z^2}+y+\frac{z^3}{x^2}+z\)
\(P+3\ge2\sqrt{\frac{x^4}{y^2}}+2\sqrt{\frac{y^4}{z^2}}+2\sqrt{\frac{z^4}{x^2}}=2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\)
Theo bất đẳng thức Svacso ta có
\(P+3\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge2\left(\frac{\left(x+y+z\right)^2}{x+y+z}\right)=2\left(x+y+z\right)=6\)
dấu = xay ra khi x = y = z = 1
\(\Rightarrow P\ge3\)
Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)
\(\left(b-c\right)^2\ge0\forall b,c\)
\(\left(c-a\right)^2\ge0\forall c,a\)
Nên : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Thay số ta có : \(a^2+b^2+c^2\ge\frac{2^2}{3}=\frac{4}{3}\)
Vậy GTNN của bt là \(\frac{4}{3}\)
Ta có :
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(z^2+x^2\ge2zx\)
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
Suy ra : \(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2.6=12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\)
Dấu ''='' xảy ra khi x=y=z=1
Vậy GTNN của \(x^2+y^2+z^2\)là 3 khi x=y=z=1
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Xét : 1/x^2+x + x/2 + x+1/4 = 1/x.(x+1) +x/2 + x+1/4 >= 3\(\sqrt[3]{\frac{1}{x.\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}\) = 3/2
=> 1/x^2+x >= 3/2 - x/2 - x+1/4 = 3/2 - (3x+1)/4
Tương tự : 1/y^2+y >= 3/2 - (3y+1)/4 ; 1/z^2+z >= 3/2 - (3z+1)/4
=> M >= 9/2 - (3x+3y+3z+3)/4 = 9/2 - (3.3+3)/4 = 9/2 - 3 = 3/2
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTNN của M = 3/2 <=> x=y=z=1
Tk mk nha